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Abstract
Since 1980, there has been a steady increase in earnings inequality alongside rapid
technological growth in the U.S. economy. To what extent does technological change
explain the observed increase in earnings dispersion? How does it affect the optimal
progressivity of the tax system? To answer these questions, we develop an incomplete
markets model with occupational choice. We estimate an aggregate production func-
tion with capital-occupation complementarity and four occupations that differ with
respect to cognitive complexity and routine task intensity. We calibrate our model
to resemble the U.S. economy in 1980 and find that technological transformation can
fully account for the increase in earnings dispersion between 1980 and 2015. The
main driver is the rising relative wage of non-routine cognitive occupations, which
benefit the most from complementarity with capital. Although technological growth
is associated with higher earnings inequality, it leads to a significant drop in optimal
tax progressivity. Lower progressivity leads to an inflow of workers into higher-paid
occupations. This increases output but also raises the wages of the occupations at the
bottom of the wage distribution, dampening the redistributive gains from progressive
taxation.
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1 Introduction

Earnings inequality in the U.S. has increased steadily since 1980, see Figure 1 (left panel)1.
What accounts for the large increase in inequality, and what are the policy implications?
There is a heated debate about these questions among academics, policymakers, and the
public press. A common view, and perhaps conventional wisdom, is that one should
meet increased inequality with higher and more progressive taxes (Delaney, 2017).

Alongside the increase in inequality, there has also been technological progress. The
right panel of Figure 1 displays a rapid fall in the relative price of equipment invest-
ment goods, which can be viewed as reflecting Investment-Specific Technological Change
(ISTC) such as cheaper access to computing power and storage (Krusell et al., 2000;
Karabarbounis and Neiman, 2014). In this paper, we answer the following questions: (i)
to what extent does technological change explain the observed increase in earnings in-
equality? (ii) how does it affect the optimal progressivity of the tax and transfer system?

The literature on technological change and the labor market has emphasized task
specificity and the degree to which workers’ tasks are complementary to capital as cru-
cial determinants of wages. Autor et al. (2003) introduce a framework where occupations
differ in terms of the nature of the tasks that are being performed. There are four main
categories of tasks: Non-routine cognitive (NRC), non-routine manual (NRM), routine
cognitive (RC) and routine manual (RM). To study the evolution of inequality and the
implications for optimal tax policy, we adopt this categorization and develop an incom-
plete markets, heterogeneous agent model with technological change and occupational
choice.

Our first contribution is to expand on the seminal paper by Krusell et al. (2000) by
specifying and estimating an aggregate production function with labor inputs based on
occupation categories rather than the education levels of the workforce. We provide
novel estimates for the elasticities of substitution between structures, equipment capital,
and these four occupation categories, which have been extensively used in the literature
that studies the impact of technological change on labor markets.

Second, and more importantly, we are the first to explain the increase in earnings
inequality in the U.S. in a framework with technological growth by estimating a pro-
duction function with capital-skill complementarity. The previous literature focused on
the education skill premium or the labor share of earnings, using representative agent
frameworks2. We can both explain the changes in wage premia between our four occu-

1In fact Figure 1 shows a steady increase since 1970. However, our paper will, for the most part, focus
on the period from 1980 to 2015 due to the limited availability of other data before 1980.

2Krusell et al. (2000) show how capital-skill complementarity can explain the evolution of the college
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Figure 1: Inequality and ISTC.

pation groups and the increase in earnings inequality, measured as the variance of log
earnings, between 1980 and 2015

3.
Our third contribution is to investigate the quantitative implications of technologi-

cal change for optimal tax progressivity in our framework with occupational choice. It
is well known that optimal progressive taxation usually comes down to a trade-off be-
tween redistribution and insurance on the one hand and efficiency on the other and that
introducing margins such as human capital or capital production externalities tilts this
trade-off in favor of efficiency. But how strong are these effects? We take a more quanti-
tative approach to this question than the previous literature. We first estimate the aggre-
gate production technology and then study optimal progressivity in our model, which
has both human capital (through occupational choice) and a production externality from
physical capital (through capital-occupation complementarity), and which furthermore
succeeds at explaining the increase in U.S. earnings inequality over time. We show that

wage premium, but they do not study other measures of inequality. Eden and Gaggl (2018) focus on the
evolution of the labor share and the routine v.s. non-routine labor share. Finally, Vom Lehn (2020) stud-
ies the relative wages of three types of workers as opposed to our four. Using a nested CES production
function, where capital equipment is directly substitutable with routine workers only, and a different cali-
bration strategy, he concludes that technological change cannot account for the labor market polarization
in wages.

3Neither the wage premia nor earnings inequality is targeted by the production function estimation
procedure. Explaining them depends on the endogenous savings and labor supply responses of the agents
in our model after treating it with the changes in the price of equipment and the levels of technology
between 1980 and 2015.

2



the technological transformation between 1980 and 2015, particularly ISTC, calls for a
significant drop in tax progressivity.

Our model is, in some respects, a standard life-cycle model with incomplete markets
and idiosyncratic risk. On the household side, it is, however, distinguished by a once
and forever choice between our four occupations at the beginning of work-life4. Agents
make their choice based on an idiosyncratic cost of acquiring the necessary skills and on
the expected lifetime utility from consumption and work effort in each profession.

A major departure from previous literature and of crucial importance for the quanti-
tative results of the paper lies in the aggregate production function we use. Our produc-
tion function has six inputs: four occupations, capital equipment and capital structures.
There are three sources of technological growth: ISTC, latent occupation-biased techno-
logical change (LAT) and TFP growth. To quantify the labor inputs in each occupation,
we apply the cross-walk classification table developed by Cortes et al. (2020) to map tasks
into occupation codes. The extent to which labor demand and wages in each of these
occupation categories will affect the wage distribution is determined by their respective
roles in the production function, by latent occupation-biased technological change, and,
in particular, by their complementarity with capital equipment. The effect of a fall in the
price of equipment investment goods (ISTC) is to spur capital accumulation and create
increased demand for workers in occupations with tasks that are more complementary
to capital relative to those that are less so. Since there are barriers to mobility between
occupations and different entry costs, the rise in labor demand for some occupations
creates a wage premium relative to workers in other occupations.

We parameterize the model in two steps. First, we use the firms’ first order condi-
tions and a no-arbitrage condition, which restricts the net return of equipment to be the
same as of structures, to estimate the production function. We use a simulated pseudo
maximum likelihood (SPML) approach, as proposed in Ohanian et al. (1997) and Krusell
et al. (2000), that implicitly targets the wage bill ratios of the NRC, NRM and NRM occu-
pations to the RM occupation from 1968 to 2015. Our estimates deliver not only a good
fit to the targeted moments but also a good fit to two non-targeted data moments: the
wage premia of each of the three occupations, NRC, NRM and NRM, relative to the RM
occupation5 and the growth rate of total factor productivity from 1968 to 2015. Second,
we insert the estimated production function into our incomplete markets model, and we
calibrate the remaining parameters to resemble the U.S. economy in 1980.

4Some workers do of course retrain; however, Cortes et al. (2020) provide evidence of the fall in routine
employment in the U.S. being primarily caused by declining inflow rates among younger workers.

5This is using quantities of labor and capital from the data. It will also turn out to work in our model
with endogenous savings and labor supply decisions.
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Inserting the growth of ISTC, LAT and TFP, we find that technological change (in par-
ticular ISTC) can fully account for the changes in wage premia and increase in earnings
inequality between 1980 and 2015

6. Neither the wage premia nor earnings inequality is
targeted by the production function estimation procedure, and explaining them is de-
pendent on the endogenous savings and labor supply responses of the agents in our
model after treating it with the changes in the price of equipment (ISTC) and the levels
of LAT and TFP between 1980 and 2015. The main driver of the increase in earnings
inequality is the rising relative wage of non-routine cognitive occupations, which bene-
fit the most from complementarity with capital. Thus, investment-specific technological
change stands as a major engine behind the growth of earnings dispersion. ISTC alone
accounts for about 2/3 of the increase in earnings dispersion, and latent occupation-
biased technological change accounts for the remaining 1/3.

Our optimal tax experiment is to maximize the expected steady-state welfare of an
unborn individual with respect to the progressivity and level of the labor income tax
code, taking government expenditure and other taxes as exogenously given7. We then
study the interaction between optimal tax progressivity and our three sources of tech-
nological growth, and we use the framework of Flodén (2001) (see also Benabou (2002)
for a similar approach) to decompose the welfare effects of progressive taxation into the
contributions resulting from its impact on efficiency, redistribution and insurance.

We apply a non-linear tax function as in Benabou (2002) and Heathcote et al. (2017),
ya = 1 − θ0y−θ1 , where ya denotes after-tax income and θ0 and θ1 define the level and
progressivity of the tax system, respectively. For 1980, we find the optimal value of our
measure of tax progressivity, θ1, to be 0.15 (close to the estimated benchmark value of
0.19), whereas, in 2015, a value of 0.05 is optimal8. To give an interpretation in terms
of actual tax rates: The average tax rate for an individual with Average Earnings (AE)
is 15% both with θ1 = 0.15 and θ1 = 0.05. The average tax rates for two individuals
making 0.5AE and 2AE are, however, 5.7% and 23.4% with θ1 = 0.15 and 12.0% and
17.9% with θ1 = 0.05. The main mechanisms driving this result are the high productivity
of NRC professions in 2015, the positive effect of shifting workers to NRC occupations

6This finding is consistent with Barro (2000) who finds that across rich counties, inequality and eco-
nomic growth are correlated.

7This is the classic tax experiment in the literature on incomplete market models with heterogeneous
agents. The recent literature also studies transitions, but given the complexity of our model relative to this
literature (we do, for example, have to solve for five prices in equilibrium), we are restricted to studying
steady states for now. Recent contributions to the optimal taxation literature in macroeconomics with
transitions such as Boar and Midrigan (2022), Ferriere et al. (2022) work with the standard Aiyagari (1994)
model.

8Indeed, there is evidence of some reduction in tax progressivity in the U.S. since 1980. Wu (2021)
finds that this measure of progressivity has fallen from 0.19 to 0.14 between 1980 and 2015.
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on the wages of lower-paid occupations, and the higher returns to wealth with the 2015-
technology9. Reducing tax progressivity shifts workers towards higher-paying occupa-
tions10, which raises output as well as the wages in lower-paying occupations, but also
reduces the benefits of redistribution and insurance from the tax system. This tradeoff is,
however, tilted towards flatter taxes with the technological transformation between 1980

and 2015.
Among our three sources of technological growth, ISTC is solely responsible for the

drop in optimal tax progressivity (LAT and TFP growth pulls in the other direction).
From the perspective of the social planner, all three welfare impacts of progressive tax-
ation (efficiency, redistribution and insurance) are tilted towards lower optimal progres-
sivity with higher ISTC. First, the efficiency channel is stronger because there is more
capital and stronger complementarity with high-earning professions. The benefit from
lowering the marginal tax rates on high earners and getting people to select NRC profes-
sions is thus higher. Second, although there is more earnings inequality in 2015, which
creates additional incentives for redistribution, more agents moving from low-earning
to high-earning occupations increases the wage rates of low earners and decreases the
wage rates of high earners. The positive effects that people moving to high-earning oc-
cupations have on the wages of low-earning occupations dampens the redistributional
loss from flatter taxes. Finally, ISTC is responsible for the increased returns on capital in
2015, which dampens the insurance motive. A higher return on capital makes it easier
to self-insure and weakens the insurance role of a progressive tax system.

The rest of the paper is organized as follows. Section 2 contains a brief survey of the
related literature. In Section 3, we describe the model. In Section 4, we estimate our
aggregate production function. Section 5 is devoted to calibrating our model. In Section
6, we present our quantitative results on inequality and optimal taxation. We conclude
in Section 7.

2 Relation to the Literature

This paper relates to two main strands of literature. First, the literature investigating the
impact of technological change on wages and inequality and, second, the literature on
optimal Ramsey taxation in incomplete markets models with heterogeneous agents.

9See Jordà et al. (2019) for evidence of higher return rates on wealth in the U.S. Moll et al. (2019) also
argue that technological growth raises the return on wealth.

10Without occupational choice there is only a slight drop in optimal progressivity between 1980 and
2015, see Section G of the Online Appendix
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Our work builds on the classic paper by Krusell et al. (2000). We expand their frame-
work by specifying and estimating an aggregate production function with labor inputs
based on occupations rather than the education levels of the workforce. Krusell et al.
(2000) document the impact of skill-biased technological change and capital-skill comple-
mentarity on the skill premium (i.e., the college premium) and can explain its evolution
over time using this mechanism. Their approach is, however, a purely production-side
approach with two types of labor (high-skilled and low-skilled). They do not model
households’ endogenous savings and labor supply decisions, and they do not study
other inequality measures, such as the variance of earnings. Using our framework with
four types of labor but also rich agent heterogeneity in the forms of income risk, age,
savings and permanent ability, we can both explain the changes in skill premia between
our four occupation groups as well as the increase in earnings inequality in the U.S.,
measured as the variance of log earnings between 1980 and 2015. This result depends on
our estimation of the production function and the endogenous savings and labor supply
decisions of the agents in our model in response to the changes in the price of equipment
(ISTC) and the levels of LAT and TFP.

Instead of dividing the population by education level, Autor et al. (2003) argues that
the most empirically relevant interaction between technology and worker productivity
comes from the types of tasks a worker performs (although these are correlated with
education). They study the effect of computerization on changes in employment by
occupation categories and posit that some occupations have a prevalence of tasks that
can easily be automated and solved by machines (routine tasks). In contrast, others
involve complex problem-solving and interactions (so-called non-routine tasks) which
are very costly or impossible to automate. The other key distinction of tasks is whether
they are cognitive or manual. We adopt the occupation taxonomy of Autor et al. (2003)
and use the cross-walk classification table developed by Cortes et al. (2020) to map tasks
into occupation codes to calculate equilibrium quantities of labor input by occupation
category11.

There is a growing literature classifying labor inputs by tasks and studying the inter-
action with automation technologies. Eden and Gaggl (2018) also estimate an aggregate
production function for the U.S. using the routine/non-routine paradigm and investi-
gate the welfare implications of investment-specific technological change for the welfare
of a representative agent. Our work instead uses the four task dimensions postulated by
Autor et al. (2003). Also, it allows for labor-augmenting technological change at the occu-

11See Online Appendix A for additional details on data treatment. We use these data to construct time
series on employment and wages by occupation category. To calculate wage premia, we use the method
of Krusell et al. (2000), as described in Online Appendix B.
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pation level, which will be important for our findings below showing that workers at the
bottom of the wage distribution have enjoyed wage growth relative to the center of the
distribution as a result of technological change. Vom Lehn (2020) maps tasks into three
labor types and proposes an aggregate function that is closer, but still quite different12,
from our aggregate production function specification. In contrast to our results, he finds
that his calibrated model cannot reproduce the job market polarization in wages. The
difference between his findings and ours possibly stems from the different production
function specifications, the calibration procedures or the different classifications of labor
inputs. Other papers using a task-based framework to study the impact of technologi-
cal growth on inequality include Acemoglu and Autor (2011), Acemoglu and Restrepo
(2018), Moll et al. (2019), Kaplan and Zoch (2020). We do not follow some of these
studies in modeling tasks explicitly. We thus forego a more detailed characterization of
the production process in favor of the ability to measure the inputs in production more
accurately, enabling the estimation of the production technology in Section 4 below.

This paper is also related to the literature on optimal progressive Ramsey taxation in
incomplete markets models with heterogeneous agents. Due to the complexity of our
model we focus on maximizing steady state welfare, as in Conesa and Krueger (2006),
Conesa et al. (2009), Peterman (2016), Heathcote et al. (2017), Heathcote et al. (2020),
Wu (2021). In the same tradition, there is also a recent sizeable literature considering
transitions after once and forever tax changes, see e.g. Bakis et al. (2015), Kindermann
and Krueger (2022), Boar and Midrigan (2022), Ferriere et al. (2022) and a much smaller
literature studying optimal dynamic taxation during a transition, see e.g. Acikgoz et al.
(2022), Dyrda and Pedroni (2021). All these papers with transitions do, however, have
in common that they work with the classical Aiyagari (1994) model. Our contribution is
to quantify the impact of technological change and human capital (through occupational
choice) on optimal tax progressivity. These are two factors of crucial importance to
inequality as well as the trade-offs between efficiency, redistribution and insurance that
one must consider when designing optimal tax systems.

Some recent studies have raised the question of how the tax system should respond
to increasing inequality caused by various sources. Closest to ours are Wu (2021) and
Heathcote et al. (2020). Wu (2021) considers an ageing population, shrinking gender
wage gap, increased idiosyncratic risk, and increased skill premium (modeled with a pa-
rameter governing the returns to human capital investment). In total, these changes lead
to a slight drop in optimal tax progressivity. The effect of an increase in the skill premium

12In his production function, abstract and manual labor inputs are substitutes or complement to a
bundle composed of routine labor input and capital equipment. In contrast, in our framework, NRC,
NRM and RC all have a constant elasticity of substitution with capital equipment directly.
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(he captures it with a parameter governing the returns to human capital investments) on
optimal progressivity is, however, almost neutral. Heathcote et al. (2020) study the im-
pact of technological change on optimal progressivity in an incomplete markets model
with skill choice. They also find that skill-biased occupational choice is almost neutral
concerning optimal tax progressivity. However, their focus is on college education and
skill-biased technological change, and there is no role for capital in production. Our
paper takes an occupation-based approach and focuses on the role of capital-occupation
complementarity. In contrast to these two studies, we find a striking drop in optimal tax
progressivity due to ISTC.

Related to our work is also Ales et al. (2015) who study Mirrlesian taxation in a talent
assignment model in a static model without capital but with technical change. They find
that technical change should lead to a slightly more progressive tax system. Scheuer and
Werning (2015) study the impact of superstars on optimal Mirrlesian taxation. They find
the impact of superstars on the optimal tax system to be neutral. Guerreiro et al. (2022),
study optimal capital taxation in a less quantitative model than ours but with the possi-
bility of automation of tasks and endogenous choice between two skills/occupations13.
In their model, which has fewer state variables than ours, it is possible to study transi-
tional dynamics. They find that one should tax robots in the short run but not in the
long run, even if it leads to higher inequality. Our contribution is distinct from theirs in
that we take the model to data and look at the implications of the changes in the price
of equipment and technology that has taken place over time for optimal taxation. We
also broaden the analysis to include the cognitive/manual dimensions of tasks, and we
include idiosyncratic income risk (adding an insurance motive to the optimal taxation
problem).

Finally, our paper which has human capital investments modeled as occupational
choice relates to the literature studying the impact of human capital investments on
inequality and the interaction with government policy, such as Huggett et al. (2011),
Guvenen et al. (2014), Holter (2015), Herrington (2015), Badel and Huggett (2017). In
our case, like in most of the literature, we find that reduced tax progressivity leads to
higher inequality; however, this is not necessarily negative as long as most households
(including the bottom earners) become richer.

13Like us they assume that older generations cannot change occupations. This is in line with the
evidence provided by Cortes et al. (2020), who argue that the fall in routine employment in the U.S. has
been primarily caused by declining inflow rates among younger workers.
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3 A Model of Labor Market Inequality and Technological

Change

Our model is a life-cycle version of the Bewley-Aiyagari-Hugget model:14 An incomplete
markets economy with overlapping generations of heterogeneous agents and partially
uninsurable idiosyncratic risk that generates both an income and a wealth distribution.
Households derive utility from consumption and leisure.

Before entering the labor market, households choose their occupation type based on
an idiosyncratic cost of acquiring the necessary skills to perform it. For tractability, we
assume that this decision is irreversible and mutually exclusive and determines from
which labor market the household will draw its wage throughout its lifetime.15 After
labor market entry, households face a stream of idiosyncratic wage shocks and make
joint decisions about consumption, savings and hours worked.

For the production side of the economy, we draw heavily on the modeling strategy of
Krusell et al. (2000) and Karabarbounis and Neiman (2014). There are three final goods
sectors in the economy: the consumption goods, structure capital goods, and equipment
capital goods sectors. This formulation allows us to express the price of equipment
goods as a function of the level of technology in that sector relative to the consumer
goods sector, which is the formulation that Krusell et al. (2000) adopts to incorporate
investment-specific technological change.

The centerpiece of the model is the production function for the intermediate input,
which uses a combination of the different occupation and capital types to produce final
goods. We build on the production function introduced by Greenwood et al. (1997) and
extend it to encompass four labor varieties: Non-routine cognitive, non-routine manual,
routine cognitive, and routine manual.

Technological progress, in the form of total factor productivity growth, occupation-
biased technological change, and investment-specific technological change, affects the
capital and labor demand and occupation wage premia. This framework creates a rich
interaction between capital accumulation, technological change, and the wages of dif-
ferent occupations and allows us to map the dynamics of these variables into earnings
inequality measures.

One key mechanism driving wage inequality in this economy is investment-specific

14See Bewley (2000), Aiyagari (1994), and Hugget (1993).
15Cortes et al. (2020) provide evidence of the main driver of the decline in routine employment being a

reduction in inflow rates rather than an increase in outflow rates. This is consistent with our assumption
of an inability to change occupation type in the middle of working life, despite changing wage premia in
other occupation types.
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technological change: As equipment prices fall, firms substitute routine manual labor for
equipment capital and other types of labor more complementary to capital. Shifting de-
mand for different labor varieties coupled with limited labor mobility produces changes
in wage premia over time.

Below, we describe the household problem, the production side of the economy, and
the definition of equilibrium in more detail.

3.1 Demographics

We assume the economy is populated by a set of J = 81 overlapping generations, as in
Brinca et al. (2016). A period in the model corresponds to one year, and households begin
life at age 20. Thus, j, the household’s age, varies between 0 (for age 20 households) and
80 (for age 100 households).

Before joining the labor market, agents must make an irreversible and mutually exclu-
sive occupation choice, deciding which labor market will determine their wages through-
out their lives. Thus, a household i draws idiosyncratic utility, κio, from acquiring the
necessary skills to join occupation type o ∈ O = {NRC, NRM, RC, RM}. This term can
be viewed as the personal cost (or benefit, if positive) of acquiring skills to perform the
tasks associated with a given occupation type, such as the effort (or joy) from studying
in the case of cognitive occupations, for example.

We assume that κio follows a type 1 extreme value distribution, Ho, with location
parameter µκ,o and scale parameter σκ,o in the tradition of discrete choice modeling of
McFadden (1973).16 Households choose the occupation where total utility is highest:

Ṽio = κio + Vo, (1)

where Vo is the expected discounted lifetime utility from choosing occupation type o,
κio is the idiosyncratic utility draw for occupation o. Assuming σκ,o = 1, ∀o ∈ O, this
formulation allows us to write the probability of choosing an occupation o before κio is
known as:

po =
eµo+Vo

∑l∈O eµl+Vl
. (2)

As a result, equation 2 is also the closed-form expression for the employment share of
occupation o.17 Other than occupation, households differ in the value of their persistent,

16Concretely, this formulation is the same as that used for unordered multinomial models where dis-
crete choices are modeled as outcomes from an additive random utility model. See Cameron and Trivedi
(2005) for a detailed exposition.

17To find Vo for each occupation, we calibrate and solve a version of the model where occupations
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idiosyncratic productivity shock, uij, permanent ability, ai, and asset holdings, bij. Work-
ing age agents have to choose how much to work, nij, how much to consume, cij, and
how much to save, bij+1, to maximize utility.

After retiring at age 65 (model age 45), households face an age-dependent probability
of dying, π(j), dying with certainty at age 100. sj = 1 − πj defines the age-dependent
probability of surviving, so that in any given period, using a law of large numbers, the
mass of retired agents of model-age j ≥ 45 is equal to Sj = ∏

t=j
t=45 st−1.

Dying households leave bequests which are redistributed evenly in a lump-sum man-
ner between the households that are currently alive, denoted by Γ. We include a bequest
motive in this framework to make sure that the age distribution of wealth is empirically
plausible, as in Brinca et al. (2021).

Retired households make consumption and saving decisions and receive a retirement
benefit, Ψ(ai). For simplicity, we assume that the public retirement benefit is constant
until the agent’s death and is equal to a fraction, ψss, of the average earnings of an agent
with permanent ability ai at age j = 44 working 1/3 of its time. ψss is set to ensure that
the Social Security system breaks even in equilibrium.

3.2 Preferences

The momentary utility function, u(cij, nij), depends on consumption, cij, and labor sup-
ply, nij ∈ (0, 1], and is given by:18

u(cij, nij) = log cij − χ
n1+η

ij

1 + η
, (3)

where η is the inverse Frisch elasticity of labor supply. Log utility from consumption
ensures the existence of a balanced-growth path for the economy. The utility function of
retired households has one extra term, as they gain utility from the bequest they leave to
living generations:

D(bij+1) = φ log(bij+1). (4)

are randomly assigned in such a way that we match the employment weights of each occupation type in
1980. The employment shares used are computed from CPS data and are: pNRC = 0.302, pNRM = 0.109
pRC = 0.243. We then compute the expected utility for each occupation type, Vo, at age 20, which we use
to solve and calibrate the version of the model with occupational choice.

18We assume that disutility of work depends only on working time, not on occupation type.
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where bij+1 is the level of liquid savings of household i. The expected discounted lifetime
utility of household i after the occupational choice is given by:

V =E0

[
J

∑
j=1

βj−1 [sju(cij, nij) + (1 − sj)D(bij+1)
]]

, (5)

where β is the discount factor and sj = 1 for j < 45.

3.3 Labor Income

Labor productivity depends on three elements that determine the efficiency units of labor
each household is endowed with in each period: Age, j, permanent ability, ai, and the
idiosyncratic productivity shock, uij, which we assume follows an AR(1) process:

uij = ρuuij−1 + εij, εij ∼ N(0, σ2
ε ). (6)

Thus, household i’s wage at age j is given by:

wi(j, o, ai, uij) = woeγ0+γ1 j+γ2 j2+γ3 j3+ai+uij , (7)

where γ1, γ2 and γ3 are estimated directly from the data to capture the age profile of
wages, and γ0 is set such that the age polynomial is equal to zero at age 20 in the model.
Households’ labor income also depends on the wage per efficiency unit of labor wo, o ∈
O ≡ {NRC, NRM, RC, RM}, where o is the labor variety supplied by the household
and chosen at the beginning of the work life. Permanent ability is assigned at labor
market entry and has variance σa,o which depends on the occupation, to match within-
occupation earnings dispersion. Online Appendix D describes the implementation of
this procedure in the numerical algorithm.

3.4 Technology

In this framework, there exist three competitive final goods: consumption goods, struc-
ture investment goods, and equipment investment goods. Each is produced by trans-
forming a single intermediate input using a linear production technology. All payments
are made in the consumption good, which is the numeraire.

The consumption good is obtained by transforming a quantity Zc,t of intermediate
input into output, which is then sold at price pc,t to households and the government.

12



The transformation technology is:

Ct + Gt = Zc,t, (8)

where Zc,t is the quantity of input, purchased at pz,t from a representative intermediate
goods firm. Given that the consumption good is competitively produced, its price equals
the marginal cost of production:

pc,t = 1 = pz,t. (9)

Likewise, structure investment good firms produce output with a similar technology:

Xs,t = Zs,t, (10)

and therefore ps,t = 1. The production of Xe,t, the equipment investment good, uses the
transformation technology:

Xe,t =
Ze,t

ξt
, (11)

where Ze,t is the quantity of input z used in the production of the final equipment goods.
1/ξt is the level of technology used in the production of Xe,t relative to the final consump-
tion good. As ξt declines, the relative productivity in assembling the equipment good
increases. We assume that ξt evolves exogenously. We obtain the price of the equipment
goods from the zero profit condition:

pe,t = ξt pz,t = ξt, (12)

where ξt = pe,t/pc,t is interpreted as the relative price of the equipment good.
A representative intermediate goods firm produces Zc,t + Zs,t + Ze,t using a constant

returns to scale technology in capital and labor inputs, yt = F(Ks,t, Ke,t, NNRC,t, NNRM,t,
NRCt, NRM,t), where Ks,t is structure capital and Ke,t is capital equipment. The firm
rents structure capital at rate rs,t, equipment at re

t and each labor variety at wo,t, o ∈ O.
Aggregate demand, measured in terms of the consumption good: Yt = Ct + Gt + Xs,t +

ξtXe,t, factor prices, and the price of the intermediate good pz,t are taken as given. The
firm chooses capital and labor inputs for each period to maximize profits:

Πz,t = pz,tyt − rs,tKs,t − re,tKet − ∑
o∈O

wotNot, (13)
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subject to:

yt = Zc,t + Zs,t + Ze,t = Ct + Gt + Xs,t + ξtXe,t = Yt. (14)

This setup implies that Zc,t = Ct + Gt, Zs,t = Xs,t, Ze,t = ξtXe,t, and F(.) = Yt =

Ct + Gt + Xs,t + ξtXe,t. We assume that the production function of intermediate goods is
Cobb-Douglas over structure capital and CES over the remaining inputs:

F(.) = AtG(.) = AtKα
s,t

[
3

∑
i=1

φiZ
σ−1

σ
i,t +

(
1 −

3

∑
i=1

φi

)
N

σ−1
σ

RM,t

] σ(1−α)
σ−1

, (15)

Z1,t =

[
ϕ1K

ρ1−1
ρ1

e,t + (1 − ϕ1)N
ρ1−1

ρ1
NRC,t

] ρ1
ρ1−1

, Z2,t =

[
ϕ2K

ρ2−1
ρ2

e,t + (1 − ϕ2)N
ρ2−1

ρ2
NRM,t

] ρ2
ρ2−1

,

Z3,t =

[
ϕ3K

ρ3−1
ρ3

e,t + (1 − ϕ3)N
ρ3−1

ρ3
RC,t

] ρ3
ρ3−1

,

where At is total factor productivity, ϕi and φi are distribution parameters where l =

1, 2, 3, correspond to the occupation types NRC, NRM, and RC, respectively19. ρl is the
elasticity of substitution between capital and the nested labor variety i, and σ is the
elasticity of substitution between each composite Zl,t and routine manual labor. Com-
plementarity between the two inputs in Zl,t requires that ρl < σ, as in Krusell et al.
(2000).

Each variety of labor input is measured in efficiency units, No,t ≡ ho,tϱo,t, where ho,t is
the quantity of hours worked in the aggregate and ϱo,t is an efficiency index representing
the latent quality per hour worked in occupation type o in period t. ϱo,t can be interpreted
as an occupation-specific technology level due to research and development or as human
capital accumulation. Firm maximization implies that marginal products equal factor
prices20.

19Krusell et al. (2000), Karabarbounis and Neiman (2014), and Eden and Gaggl (2018) use CES pro-
duction functions where capital equipment is nested with all labor varieties except for unskilled/routine
manual labor, which is introduced in isolation. The reason for this setup is the set of symmetry restrictions
on substitution elasticities imposed by the CES functional form, as explained in Krusell et al. (2000). In
a nutshell, this nesting form allows for complementarity between capital and differentiated labor (NRC
NRM, RC) while permitting the elasticities of substitution between routine manual labor and other labor
varieties to be different. Our version extends this framework with a finer breakdown of labor varieties.
In estimating the production function, we use the Simulated pseudo-Maximum Likelihood Estimation
(SPMLE) method proposed by Ohanian et al. (1997) which was also applied in Krusell et al. (2000). Our
application is described in the next section.

20The first-order conditions can be found in section F of the Online Appendix.
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Capital laws of motion are given by:

Ks,t+1 = (1 − δs)Ks,t + Xs,t, (16)

Ke,t+1 = (1 − δe)Ke,t + Xe,t, (17)

where δs and δe are the depreciation rates of structures and equipment, respectively.

3.5 Government

The social security system is managed by the government and runs a balanced budget.
The revenues are collected from taxes on employees and on the representative firm at
rates τss and τ̃ss, respectively, and are used to pay retirement benefits, Ψ.

The government taxes consumption, τc, and capital income, τk, at flat rates. The labor
income tax follows a non-linear functional form as in Benabou (2002), Heathcote et al.
(2017) and Holter et al. (2019):

ya = 1 − θ0y−θ1 , (18)

where θ0 and θ1 define the level and progressivity of the tax schedule, respectively. y is
the pre-tax labor income and ya is after-tax labor income.21

Tax revenues from consumption, labor and capital income taxes are used to finance
public consumption, Gt, which clears the budget constraint. Denoting social security
revenues by Rss

t and the other tax revenues as Tt, the government budget constraint is
defined as:

Tt =Gt, (19)

Ψt

(
∑

j≥45
Ωj

)
=Rss

t . (20)

3.6 Asset Structure

Households hold two asset types: Structures capital, ks,ij, and equipment capital, ke,ij.
There is no investment-specific technological change in the steady state, i.e., ξt+1 = ξt =

ξ, so we drop the time index on return rates for this exposition. Thus, the return rates

21See the Online Appendix of Holter et al. (2019) for a detailed discussion of the properties of this tax
function.
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must satisfy:
1
ξ
[ξ + (re − ξδe)(1 − τk)] = 1 + (rs − δs)(1 − τk), (21)

which follows from non-arbitrage: Investing in equipment capital must yield the same
after-tax return as investing the same amount in structures. Total assets for the consumer
are defined as:

bij ≡ ξke,ij + ks,ij, (22)

3.7 Household Problem

In any given period a household is defined by its age, j, occupation oi, asset position bij,
permanent ability ai, and a persistent idiosyncratic productivity shock uij. A working-
age household chooses consumption, cij, work hours, nij, and future asset holdings, bij+1,
to solve its problem of maximizing expected utility. The household budget constraint is
given by:

cij(1 + τc) + ξke,ij+1 + ks,ij+1 = [ξ + (re − ξδe)(1 − τk)] ke,ij

[1 + (rs − δs)(1 − τk)]ks,ij + qΓ + YN, (23)

where YN is the household’s labor income after social security and labor income taxes,
and q = 1/(1+ rs(1− τk)). Using 21, in equilibrium we can rewrite the budget constraint
as:

cij(1 + τc) + bij+1 = (bij + Γ)[1 + r(1 − τk)] + YN. (24)

The household problem can be formulated recursively as:

V(j, bij, oi, ai, uij) = max
cij,nij,bij+1

[
u
(
cij, nij

)
+ βEuj+1

[
V(j + 1, bij+1, oi, ai, uij+1)

]]
s.t.:

cij(1 + τc) + bij+1 = (bij + Γ)[1 + r(1 − τk)] + YN

YN =
nijw

(
j, oi, ai, uij

)
1 + τ̃ss

(
1 − τss − τl

[
nijw

(
j, oi, ai, uij

)
1 + τ̃ss

])
nij ∈ (0, 1], bij ≥ 0, bi0 = 0 ∀i, cij > 0.

The problem of a retired household differs in three ways: There is a positive age-
dependent probability of dying, π(j), a bequest motive D(bij+1), and labor income is
replaced by constant retirement benefit depending on permanent ability, Φ(ai). The
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retired household’s problem can be written as:

V(j, bij, ai) = max
cij,bij+1

[
u
(
cij, bij+1

)
+ β(1 − π(j))V(j + 1, bij+1, ai) + π(j)D(bij+1)

]
s.t.:

cij(1 + τc) + bij+1 = (bij + Γ)[1 + r(1 − τk)] + Ψ(ai)

bij+1 ≥ 0, cij > 0.

3.8 Stationary Recursive Competitive Equilibrium

Letting Φ(j, b, o, a, u) be the measure of agents with corresponding characteristics (j, b, o, a, u),
we define a stationary recursive competitive equilibrium as follows22:

1. Taking factor prices and initial conditions as given, the value function V(j, b, o, a, u)
and the policy functions, o(κo), c(j, b, o, a, u), b′(j, b, o, a, u), and n(j, b, o, a, u), solve
the household’s optimization problem.

2. Markets clear:
ξKe + Ks =

∫
b + Γ dΦ,

NRM = ϱRM

∫
nRM dΦ, NRC = ϱRC

∫
nRC dΦ,

NNRM = ϱNRM

∫
nNRM dΦ, NNRC = ϱRM

∫
nNRC dΦ,

C + G + δsKs + ξδeKe = F(Ks, Ke, NNRC, NNRM, NRC, NRM).

3. The prices of the production factors equal their marginal products (Equations A-
24-A-28 hold).

4. The government budget balances:

G =
∫

τkr(b + Γ) + τcc + nτl

[
nw(j, o, a, u)

1 + τ̃ss

]
dΦ.

5. The social security system balances:

∫
j≥45

Ψ dΦ =
τ̃ss + τss

1 + τ̃ss

( ∫
j<45

nw dΦ

)
.

22The time index is dropped from aggregate variables, given that this is characterization of the steady
state.
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6. The assets of the deceased at the beginning of the period are uniformly distributed
among the living:

Γ
∫

ω(j)dΦ =
∫

(1 − ω(j)) h dΦ.

4 Estimating the Production Function

The production function in Equation 15 that transforms our four labor varieties and two
types of capital into output goods is crucial to our quantitative results. In this section,
we describe the stochastic specification of the production function model, the equations
to be estimated, and the results. The estimation strategy follows Krusell et al. (2000).
When we calibrate our model, we will treat the parameter estimates from this section as
exogenously given. When we study the impact of changes in technology over time on
inequality, we will insert our results from this section in the model23.

4.1 Stochastic Specification

The stochastic elements in our model are the unobserved technology components: (i)
the relative technological level of the investment good sector; (ii) the set of labor-specific
efficiency indices; and (iii) the factor-neutral technological process. We assume that the
relative price of equipment (ξ̃t = ξt/ξt−1) is trend stationary, and confirm this with a
Dickey-Fuller test. We assume that the labor efficiency index processes have different
linear trends for each labor variety. Defining the processes in logs, we have:

ψt ≡ log(ϱt), ψt = ψ0 + ψ1t + νt, (25)

where ψt is a (4× 1) vector of the log of the latent efficiency indices, ψ0 is a (4× 1) vector
of constants which specify the value of the indices at the beginning of the sample, ψ1 is
a (4 × 1) vector of growth rates, and νt is a (4 × 1) vector of shock processes that we
assume to be multivariate normal, i.i.d. with covariance matrix Ω: νt ∼ N(0, Ω). The
i.i.d. assumption simplifies the identification of the factor-neutral technological change,
At, which is described below.

4.2 Equation Specification

We use a system with two sets of equations obtained from the first order conditions
of agents to estimate the model: (i) the wage bills relative to the routine manual labor

23The data used in the estimation is described in Online Appendix B.
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variety; and (ii) a no-arbitrage condition between investing in equipment and structure
capital. These are defined as follows:

wo,tho,t

wRM,thRM,t
= wbro,t(ψt, Xt; θ), o ∈ O = {NRC, NRM, RC}, (26)

and

1 + [FKs(ψt+1, Xt+1; θ)− δs,t+1] = Et

(
ξt+1

ξt

)
(1 − δet+1) +

FKe(ψt+1, Xt+1; θ)

ξt
(27)

where equation 27
24 is obtained from equation 21, assuming that ξt ̸= ξt+1, and where

we substituted the return rates by factor marginal productivities.
Depreciation rates are indexed by t since they change over the time25. The relative

wage bills in the model wbro,t are functions of Xt and θ. Xt is the vector of inputs
and depreciation rates {Ks,t, Ke,t, hNRC,t, hNRM,t, hRC,t, hRM,t, δs,t, δe,t}. The vector θ is the
set of parameters {α, ρ1, ρ2, ρ3, ϕ1, ϕ2, ϕ3, φ1, φ2, φ3, ψ0, ψ1, S, ηω, Ke,0}, including the first
observation of the equipment capital stock, which we estimate jointly with the other
parameters. ηω is the standard deviation of the error term in the equipment price equa-
tion, which we specify below. Like Krusell et al. (2000), we assume that there is no risk
premium in equation 27, and that the tax treatment is identical between equipment and
structure capital returns. Finally, we substitute the first term on the right hand side of
equation 27 with Et (ξt+1/ξt) (1 − δet[1 − τk,t]) + ωt, where ωt is the i.i.d. forecast error
and ωt ∼ N

(
0, η2

ω

)
. This set of assumptions imply that At = Yt/G(.) from equation 15.

Given that this is a non-linear system of eight equations with unobserved state vari-
ables, standard linear Kalman filter techniques cannot be applied to estimate the param-
eter vector θ. Ohanian et al. (1997) propose a two-step version of the SPML estimator to
find θ for this type of problem26.

The parameter vector θ has dimension 36. Our sample contains 49 observations for
each equation. We reduce the number of parameters estimated by external calibration or
by setting a priori restrictions. First, we impose that S be a diagonal matrix and that the
variance of the disturbances is identical for all labor types. Thus, S = η2

ν I4, where η2
ν is

the common innovation variance and I4 is a (4 × 4) identity matrix. Second, we fix ψ4,0,
the initial level of the latent efficiency index of routine manual workers, which is not

24Note that this no-arbitrage equation applies on capital returns net of depreciation. Hence, in equilib-
rium, we are allowing for different capital gross returns across the two types of capital because they have
different depreciation rates.

25See Online Appendix B
26See details in Online Appendix C.

19



identified. Third, we set the income share of structures to 0.04 as in Krusell et al. (2000).
Finally, we regress the variation rate of the relative price of equipment on a linear trend to
calibrate the forecast error variance of the equipment price index. We set ηω to be equal
to the estimated standard deviation of the error term in the regression σ̃ω = 0.032. This
reduces the number of parameters to be estimated to 19: The common variance of the
latent processes, η2

ν, the elasticities, σ, ρ1, ρ2, ρ3, the production function share parameters,
ϕ1, ϕ2, ϕ3, φ1, φ2, φ3, the parameters governing the latent state variables, except for ψ4,0,
and the initial level of capital equipment, Ke,0.

4.3 Estimation Results and Model Fit

The model is estimated using data from 1967 to 2016 and the Simulated Pseudo Maxi-
mum Likelihood Estimation (SPMLE) procedure. Table 1 shows the resulting estimates.

Elasticity estimates for the nested occupation types are all consistent with capital-
occupation complementarity, i.e., σ > ρi, i = 1, 2, 3. The estimation of these elasticities is
one of the contributions of this paper to the literature.

The most comparable estimates are provided by Eden and Gaggl (2018), who specify
a CES production function with non-routine labor nested with capital. In contrast to
our estimates of 0.5 and 2.1 for NRC and NRM labor, they estimate an elasticity of
substitution of 1.4 for non-routine labor. For routine manual labor, their estimate is
8.0 for routine occupations, compared to our elasticity of 5.6 for RM. Although less
comparable, Krusell et al. (2000) obtain a value of 0.67 for skilled labor and 1.67 for
unskilled labor. For the processes of occupation-specific technology, we estimate that
only the non-routine cognitive occupations have experienced positive growth. At the
same time, routine manual labor has suffered the largest decline27.

Figure 2 shows model fit to targeted moments over time. Figure 2a displays aggregate
ex post return rates of equipment and structures implied by our model, which are zero
in expectation as per our assumption. They have a 4% average, as in Krusell et al. (2000),
although a slightly increasing trend from the early 2000s onward.

Figure 2b plots wage bill ratios implied by the model, as specified by the set of
equations (26), and the data. Model predictions closely track the data. The NRC wage bill

27Vom Lehn (2020) also estimates elasticities of substitution between different task bundles that are not
directly comparable to ours. In his production function, abstract and manual labor inputs are substitutes
or complement to a bundle composed of routine labor input and capital equipment. In contrast, in our
framework, NRC, NRM and RC all have a constant elasticity of substitution with capital equipment di-
rectly. In the case of homogeneous workers, he calibrates the elasticity of substitution between routine
labor input and capital equipment to 1.3, between manual and a bundle of routine labor input and equip-
ment to 1.49, and between abstract labor input and a bundle of routine labor input and equipment to
0.31.
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Table 1: Parameter Estimates

Parameter Description Value

σ EOS RM 5.564

ρ1 EOS NRC 0.497

ρ2 EOS NRM 2.055

ρ3 EOS RC 5.029

ϕ1 Share NRC 0.378

ϕ2 Share NRM 0.086

ϕ3 Share RM 0.279

φ1 Share composite NRC 0.160

φ2 Share composite NRM 0.045

φ3 Share composite RC 0.023

ψ0,1 Intercept NRC 0.859

ψ0,2 Intercept NRM 1.936

ψ0,3 Intercept RC 3.582

ψ1,1 Slope NRC 0.002

ψ1,2 Slope NRM -0.006

ψ1,3 Slope RC -0.001

ψ1,4 Slope RM -0.010

Ke,0 Starting equipment capital 582

Note: The table shows the parameter estimates for the production function and the labor
efficiency indices. “EOS” stands for elasticity of substitution. The ϕ are the shares of each
occupation inside each labor-equipment composite. The φ are the shares of each labor-
equipment composite. The ψ0 indicate the intercept of the linear labor efficiency indices,
and ψ1 the slope. Ke,0 is the starting level of equipment capital in millions of dollar.

shot up from near par with routine manual labor in 1968 to 3.5 in 2015. In contrast, NRM
and RC wage bills grow slowly upwards relative to that of routine manual occupations,
which is explained by both their lower level of complementarity with equipment capital
as well as their declining level of latent efficiency.

Figure 2c shows the model fit to the wage premia of each occupation relative to RM.
As in the previous figure, the dashed lines indicate the data and the solid lines are the
model predictions. In all cases, the model tracks the data closely. This is important given
that our goal is to use the estimated parameters to calibrate the theoretical model. The
key force driving earnings dispersion is the change in wage premia across groups.

Finally, Figure 2d displays our estimate of total factor productivity in the U.S. for this
period. From 1968 to 2008, TFP increased by almost 30% and then fell to around 20%
in the following years. For comparison, the estimate of total factor productivity by the
Penn World Table increases by 30% from 1968 to 2015 (FRED).

In conclusion, we provide new estimates for the elasticities of substitution between
equipment capital and the occupation categories defined in Autor et al. (2003), which
have been extensively used in the literature to discuss the impact of technological change
and the future of labor markets. We find that our model is broadly compatible with the
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last period of the sample to estimate the model. In Figure 2d, total factor productivity is normalized
to 1 in 1968. Construction of the measures is described in Online Appendix B.

Figure 2: Empirical Model Fit to Targeted and Non-Targeted Moments.

data, especially with respect to the occupation wage premia, which is crucial for ensuring
that the predictions of the theoretical model are consistent with the data. We now turn
to the calibration of the theoretical model, which uses the estimates obtained from this
section to parameterize the production side of the economy.

5 Calibration

This section describes the calibration of the baseline model to resemble the U.S. economy
in 1980. Many parameters can be set externally (i.e., we estimate them directly from the
data or take them from the previous literature and insert them in the model). This
includes the production function that we estimated in Section 4 but also, for example,
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the tax function and the age profile of earnings. Table 2 lists the externally calibrated
parameter values and data sources. The seven parameters in Table 4 are estimated by
the simulated method of moments (SMM) approach, where we change the parameters
to minimize the distance between the model and data moments.

5.1 Externally Calibrated Parameters

Below we discuss the external calibration of parameters that were not estimated in 4.

Preferences We set the inverse of the Frisch elasticity of labor supply, η, to 3, which is a
standard value in the literature.

Labor productivity The wage profile through the life cycle (see equation 7) is calibrated
directly from the data. We run the following regression using Panel of Study of Income
Dynamics (PSID) data:28

ln(wit) = ai + γ1 j + γ2 j2 + γ3 j3 + εit. (28)

where j is the age of household i’s reference person and ai is a household-specific effect.
We then use the residuals of the equation to estimate the parameters governing the id-
iosyncratic shock, ρ and σϵ. The scale parameters of the cost of choosing an occupation
(µNRC, µNRM, µRC, µRM) are set such that they match the employment shares observed in
1980. The procedure is explained in Section 3. The location parameter, µRM, is normal-
ized to 0.

Technology Equipment and structure depreciation rates are set to match those used in
the estimation of the empirical model for 1980, and described in Online Appendix B.
The production function is calibrated using the parameters estimated from the empirical
model. The efficiency indices of each occupation are set to match those of the empirical
model in 1980. The level of total factor productivity is set to the estimate from the
empirical model for 1980.

Government We set θ0 and θ1 to the estimates obtained by Wu (2021) for 1980. For the
social security rates, we assume no progressivity. Both social security tax rates, employer
and employee, are set to 0.06, the average rate in 1980. Finally, we set τc and τk to match
the values obtained in Mendoza et al. (1994) for 1980, i.e, τc = 0.05, τk = 0.47.

28PSID data is described in section A of the Online Appendix.
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Table 2: Externally Calibrated Parameters

Description Parameter Value Source

Preferences
Inverse Frisch elasticity η 3.000 Assumption

Labor productivity
Parameter 1 age profile of wages γ1 0.265 PSID
Parameter 2 age profile of wages γ2 -0.005 PSID
Parameter 3 age profile of wages γ3 0.000 PSID
Variance of idiosyncratic risk σϵ 0.307 PSID
Persistence idiosyncratic risk ρu 0.335 PSID
Location of the cost of choosing NRC µNRC -5.712 CPS
Location of the cost of choosing NRM µNRM 4.441 CPS
Location of the cost of choosing RC µRC 0.379 CPS
Location of the cost of choosing RM µRM 0.000 Assumption

Technology
Equipment depreciation rate δe 0.106 Section 4

Structures depreciation rate δs 0.026 Section 4

Share structures α 0.040 Section 4

Share NRC ϕ1 0.378 Section 4

Share NRM ϕ2 0.086 Section 4

Share RC ϕ3 0.279 Section 4

Share composite NRC φ1 0.160 Section 4

Share composite NRM φ2 0.045 Section 4

Share composite RC φ3 0.023 Section 4

EOS NRC ρ1 0.497 Section 4

EOS NRM ρ2 2.055 Section 4

EOS RC ρ3 5.029 Section 4

EOS RM σ 5.564 Section 4

Latent efficiency NRC ϱ1 2.734 Section 4

Latent efficiency NRM ϱ2 4.955 Section 4

Latent efficiency RC ϱ3 34.662 Section 4

Latent efficiency RM ϱ4 0.378 Section 4

Total factor productivity A 16.728 Section 4

Relative price of investment goods ξ 1.000 Assumption

Government and SS
Consumption tax rate τc 0.054 Mendoza et al. (1994)
Capital income tax rate τk 0.469 Mendoza et al. (1994)
Tax scale parameter θ0 0.850 Wu (2020)
Tax progressivity parameter θ1 0.187 Wu (2020)
SS tax employees τss 0.061 Social Security Bulletin, July 1981

SS tax employers τ̃ss 0.061 Social Security Bulletin, July 1981
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5.2 Endogenously Calibrated Parameters

To calibrate the parameters for which we do not have direct empirical counterparts, {β, χ,
φ, σNRC, σNRM, σRC, σRM}, we use a simulated method of moments approach, for which
we construct the following loss function:

L(θ̃) = ||Mm − Md||, (29)

where θ̃ is the vector of parameters to be estimated and Mm and Md the moments in the
model and in 1980, respectively. Our estimate, θ̃∗, is obtained by minimizing (29).

Table 3: Fit of Model to Data (SMM)

Data moment Description Source Model Data

65-on/all Average wealth of households 65 and over US Census Bureau 1.310 1.311

K/Y Capital to output BEA and CPS 1.412 1.412

n Fraction of hours worked BEA 1/3 1/3

Var ln(eNRC) Variance of log earnings (NRC) CPS 0.408 0.409

Var ln(eNRM) Variance of log earnings (NRM) CPS 0.410 0.406

Var ln(eRC) Variance of log earnings (RC) CPS 0.409 0.410

Var ln(eRM) Variance of log earnings (RM) CPS 0.305 0.304

Table 4: Parameters Calibrated Internally

Parameter Value Description

φ 9.993 Bequest utility
β 0.961 Discount factor
χ 66.981 Disutility of work
σa,NRC 0.519 Variance of ability NRC
σa,NRM 0.515 Variance of ability NRM
σa,RC 0.517 Variance of ability RC
σa,RM 0.385 Variance of ability RM

We use the ratio between the average wealth of 65 and older to the average wealth
in the economy as the target for the utility of bequests parameter. The discount factor
is set by targeting the capital-to-output ratio29. The capital stock is obtained from the
estimation of the empirical model of section 4. Disutility from work targets average
hours worked, and we calibrate the occupation-specific variances of ability to target the
variance of log earnings observed in the data for each occupation. Table 4 presents the

29This quantity is not directly comparable to the usual K/Y in the macro literature because we include
non-residential capital in the form of non-residential structures and equipment capital only, as proposed
by Krusell et al. (2000).
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parameters calibrated internally through SMM estimation, and Table 3 displays the fit of
the model moments to the data moments.

6 Quantitative Results

In this section, we use our model, calibrated to resemble the U.S. economy in 1980, to an-
swer the two main questions raised in the introduction: To what extent does technologi-
cal change explain the observed increase in earnings inequality? How does technological
change affect the optimal progressivity of the tax system?

6.1 The Sources of Growing Earnings Inequality

The main experiment conducted in this section is to change the externally estimated
levels of technology and parameters governing the tax system from their values in 1980

to their 2015 values30. In addition, we recalibrate the distribution of occupation-specific
utilities to match the occupation shares in 2015. We then decompose the variation in our
earnings inequality measure (the variance of log earnings) between the two steady states
to identify the role of investment-specific technological change (ISTC), latent occupation-
biased technological change (LAT), and TFP growth.

We also compare the magnitude of these technological sources of variation in earnings
dispersion to others, such as the observed changes in the progressivity of the tax system
and the fall of the capital income tax. The decompositions are carried out by setting the
relevant parameters to their 1980 level and comparing the resulting change in earnings
dispersion to its 2015 value as calculated in the baseline experiment.

Parameters related to tastes, individual productivity processes and the production
function are kept constant between steady states: The age profile of wages (γ1, γ2, γ3),
the idiosyncratic productivity process (ρu and σϵ), preferences (λ, η, β), ability variance
parameters (σa,o, o ∈ O), and production function shares and elasticities. The parameters
changed from 1980 to 2015 are listed in Table 5.

In the new steady state, we set the relative price of investment goods to 40% of the
initial price index, which mimics the fall measured in the data between 1980 and 2015.
Labor efficiency indices are set to their 2015 levels, using the functional forms of those
processes estimated in section 4. Likewise, TFP is set to equal the estimated level in

30There many other factors that potentially changed between 1980 and 2015, and that could cause either
higher or lower inequality (for example, ageing population, shrinking gender wage gap, and changes in
idiosyncratic risk, see Wu, 2021) but we focus on these two channels.
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Table 5: Parameter Changes 1980-2015

Parameter Description 1980 New SS

τc Consumption tax 0.054 0.050

τk Capital income tax 0.469 0.360

τss Employee SS tax 0.061 0.077

τ̃ss Employer SS tax 0.061 0.077

θ0 Tax scale 0.850 0.922

θ1 Tax progressivity 0.187 0.137

ξ Investment price 1.000 0.405

ϱ1 Latent efficiency NRC 2.734 2.986

ϱ2 Latent efficiency NRM 4.955 4.051

ϱ3 Latent efficiency RC 34.662 33.907

ϱ4 Latent efficiency RM 0.378 0.267

µNRC NRC cost location parameter -5.713 -7.618

µNRM NRM cost location parameter 4.441 3.938

µRC RC cost location parameter 0.379 -2.332

2015. The location parameters of the idiosyncratic cost distributions are set to match the
occupation employment shares observed in 2015.

The scale and the progressivity parameters of the labor income tax schedule are set
to match the estimates of Wu (2021). The Social Security tax rates are those described in
Brinca et al. (2016) for the U.S. economy. The consumption tax and the capital income
tax are calculated using the method in Mendoza et al. (1994).

Table 6 contains the fit of the model moments to some untargeted data moments in
1980 and 2015. In the first section of the table, we compare relative input quantities
from the theoretical model to those obtained from estimating the empirical model of the
production function in section 4. The relative input quantities are fairly close to our
estimates, except for the growth of equipment capital between 1980 and 2015, which the
theoretical model substantially underestimates relative to the empirical model. In other
words, the model cannot generate a sufficiently large rise in savings compared to our
empirical estimates.31

The second section shows the wage changes by occupation between both steady
states. The model slightly overestimates wage growth for all occupations, except for
NRM. However, as can be seen in the third section of the table, wage premia are very
close to the data in both years, which is key in terms of accounting for the change in
earnings dispersion. The bottom line shows the variance of log earnings which is the

31This is likely because the U.S. is turning into a large open economy. This means that the stock of
capital has grown via an increase not only in domestic savings but also in foreign direct investment (FDI).
According to the BEA, the stock of FDI in the U.S. increased 40-fold between 1980 and 2015 from 83$
billion to 3.4$ trillion (Source: BEA annual data on FDI position). See also Chakraborty et al. (2017) for the
growth in cross-border lending to U.S. firms over the period.
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Table 6: Model Fit

1980 2015

Variable Model Data Model Data

Relative input quantities
Ke/NNRC 6.27 7.80 16.70 39.14

NNRM/NNRC 0.66 0.55 0.49 0.43

NRC/NNRC 10.61 9.10 5.74 5.66

NRM/NNRC 0.16 0.16 0.05 0.05

Wage growth
NRC wage 1.00 1.00 1.38 1.28

NRM wage 1.00 1.00 1.11 1.11

RC wage 1.00 1.00 1.25 1.14

RM wage 1.00 1.00 1.00 0.93

Wage premia
NRC 1.35 1.31 1.83 1.80

NRM 0.60 0.63 0.66 0.74

RC 0.91 0.88 1.14 1.09

Variance of log earnings 0.43 0.45 0.57 0.57

Note: The first section of the table displays the relative input quantities. The second section
displays wage per efficiency unit by occupation (model definition) and wages per hour at
constant 1968 prices by occupation (data definition). All the prices are normalized to 1

in 1980. The third section shows the wage premia calculated as the ratio between the
marginal productivities of labor in each occupation category relative to RM in the case of
the model. The empirical counterpart of the model wage premia is described in Appendix
B.

centerpiece of our analysis. The total variance of log earnings grows 27% from 1980 to
2015 in the data and 33% in the model, implying that the model slightly overshoots the
growth in earnings inequality.

To understand the drivers of the change in aggregate earnings inequality, we decom-
pose the model predicted variation in labor market dispersion measures. This is achieved
by setting each set of parameters of interest to their 1980 levels while keeping the remain-
ing parameters at their 2015 level. We then compare the resulting change to the variation
produced by the baseline experiment.

Figure 3 illustrates these exercises by displaying the response of labor income disper-
sion measures to the set of parameter shifts presented in Table 5. The first bar in each
panel indicates the observed change in that measure, while the second bar indicates the
change predicted by the model due to the baseline parameter shifts shown in Table 5.

Figure 3a, in the top left panel, shows how the model fares in generating a shift
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Figure 3: Decomposition of the Change in Earnings Inequality from 1980 to 2015.

in pre-tax earnings inequality comparable to the one observed in the data. As previ-
ously mentioned, the model prediction slightly overshoots the increase in the variation
of earnings inequality observed in the data (33% in the model but only 27% in the data).
However, this confirms that our framework is successful in predicting a change in labor
market inequality which is comparable in magnitude to what we observe in the data.

The drop in the relative price of an investment, ξ, is the single most important source
of the increase in pre-tax earnings inequality. If this drop had not occurred, our frame-
work predicts a rise in earnings dispersion of only 10%. Thus, investment-specific tech-
nological change alone accounts for two-thirds of the model-predicted increase in earn-
ings dispersion. This follows from the increased dispersion of between-group wages,
resulting from the complementarity effect between occupations and equipment capital.

Latent occupation-biased technological change is next in terms of importance: Keep-
ing the occupation-specific efficiency indices at their 1980 levels generates only a 15%
increase in pre-tax earnings dispersion, half of the total change predicted by the model.
This results from a lower increase in the NRC wage premium in particular. It only rises
by 18 p.p.

Taken together, ISTC and LAT fully account for the increase in pre-tax earnings dis-
persion. Keeping both sets of parameters at their 1980 values yields a reduction in wage
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variance and eliminates the role of the NRC wage premium in driving the change in
inequality.

In contrast, other sources of variation in the variance of pre-tax log earnings are
much less relevant. The reduction in tax progressivity had a positive but comparatively
much smaller effect. Changes in the costs of acquiring the skills necessary to join each
occupation while impacting the changes in employment shares (Figure 4) produced only
a small increase in earnings inequality.
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Figure 4: Decomposition of Variation in Employment Shares by Occupation Type from
1980 to 2015.

Figures 3b and 4 show how relative prices and quantities of labor by occupation
respond to the experiments conducted. This enables us to understand the direction of
mechanisms and their strength. For prices, there are two competing forces: On the one
hand, the increase in the NRM wage premium reduces earnings inequality, all else equal,
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given that it starts in negative territory in 1980 and increases by 6 p.p. (10 p.p. in the
data). In other words, technological growth narrows the gap between the wage of NRM
occupations, which lie at the bottom of the wage distribution, and RM occupations. On
the other hand, the wage premia of NRC and RC occupations increase relative to RM
occupations. In particular, the NRC wage premium increases by 50 p.p. and stands as
one of the main sources of increased earnings dispersion in this model.

Concerning employment shares, the main takeaway is that technological change gen-
erates an increase in the weight of non-routine occupations in total employment. Without
occupation-biased technological change and ISTC, the model predicts that the share of
NRC workers would drop in 2015, and the share of NRM would remain unchanged.

In summary, technological change (and ISTC in particular) can generate an increase in
pre-tax earnings inequality, which is comparable to the one observed in the data. At first
glance, this would imply a strengthening of the case for an increase in the progressivity of
the labor income tax system. In the next two subsections, we study optimal progressivity
in 1980 and 2015 and discuss how technological change has affected it.

6.2 Optimal Tax Progressivity in 1980

In this subsection, we examine the model-implied welfare function for the progressivity
of the labor income tax system, θ1. We decompose the welfare changes into the contri-
butions from efficiency, redistribution and insurance (Flodén (2001)), and we study the
welfare changes for the different occupations. Our main finding is that optimal progres-
sivity is somewhat lower than the estimated progressivity of the U.S. labor income tax
system in 1980 (0.15 vs. 0.19). Nonetheless, the model-implied gains from moving to the
optimal level of θ1 are very low at 0.06% in consumption equivalent variation.

We focus on a tax experiment where we keep the level of government spending exoge-
nously fixed and focus on finding the most efficient way to cover the current spending
level. This has the advantage that we do not have to make assumptions about the utility
of government spending and has been a tradition in much of the literature on optimal
taxation in Aiyagari-type OLG models32. For a given level of tax progressivity, θ1, we
adjust the tax level, θ0, such that the government can raise enough tax revenue to cover
the level of government expenditure, G, in the initial steady state. All other taxes are
kept constant in our experiment.

To measure consumer welfare, we use the utilitarian social welfare criterion and max-
imize the expected lifetime utility of a household that is yet to enter the labor market

32See, e.g., Erosa and Gervais (2002), Conesa and Krueger (2006), Peterman (2016).
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in a steady state.33 In a nutshell, the welfare gain from choosing a progressivity level
θB

1 ̸= θ1 can be broken down into three elements: (i) the gain from reducing uncertainty
that agents face (insurance), (ii) the gain from reducing inequality in average lifetime
marginal utilities of consumption and leisure (redistribution), and (iii) the impact that
progressivity has on the overall levels of consumption and leisure via the incentive to
work and invest (efficiency).
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Note: The left panel plots social welfare as a function of the progressivity parameter, θ1, for the 1980 cali-
bration. Social welfare is measured as the consumption equivalent variation required for agents entering
the labor market to be indifferent between the baseline policy and the new one. The vertical lines indicate
current and optimal progressivity levels. θ∗1 indicates optimal progressivity according to the model. The
right panel shows the social welfare functions for households starting their life in the indicated occupation
categories each year. In this case, welfare is the expected lifetime utility of agents once they have chosen
occupation but before they know ai (ability) and ϵi1 (starting level of wage risk).

Figure 5: Social Welfare and Tax Progressivity in 1980

Figure 5 shows the results of our analysis. The left panel of Figure 5 plots the social
welfare function for 1980 (the solid blue line). The model-implied optimal progressivity
is 0.15, below the estimate of actual progressivity in 1980 of 0.19 by Wu (2021). Our esti-
mate of optimal progressivity for 1980 is close to but below that of Heathcote et al. (2020),
who put it at 0.18. Several differences between our models could lead to differences34.
As we will see in Section 6.3 below, these differences become much more striking in 2015.

The low total welfare gain from moving to θ1 = 0.15 masks large countervailing

33See Online Appendix E for a definition of the welfare criterion and an exposition of how to decompose
it into the contributions from different effects (efficiency, redistribution and insurance) in the case of our
framework.

34We do for example have four occupations and capital-occupation complementarity. They have cross-
sectional variation in the disutility of labor, which we do not.
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movements in the contributions from different effects, which form the trade-offs faced
by the policymaker. On the one hand, a reduction of θ1 hampers the effectiveness of
the labor income tax system as a mechanism to reduce both the uncertainty faced by the
agents and the inequality between them. On the other hand, it increases the incentive to
exert work effort35, to save and to choose a higher-paying occupation (this also increases
the marginal productivity in lower-paying professions). Figure 6 shows the comparative
statics of output, wages and employment shares to progressivity in 1980. We look at the
positive and negative effects of a reduction in progressivity in turn.
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Note: Total labor input is the sum of labor efficiency units supplied in the economy. Average hours is the
percentage of the labor endowment used to work on average. Each panel shows how prices and quantities
in the economy change with respect to progressivity.

Figure 6: Comparative Statics with Respect to Progressivity in 1980.

35For a given average tax rate, a larger θ1 leads to a higher marginal tax rate and lower optimal choice
of hours, see Holter et al. (2019)
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On the plus side, reducing θ1 to 0.15 increases aggregate saving and effort by reducing
the marginal tax rate on high wage earners (in fact, most wage earners36). This raises
the level of output per capita by 2% (Figure 6a). The net effect on wages depends on two
factors: (i) the direct effect of increased saving and capital on the marginal productivity
of each occupation, and (ii) how agents choose their occupation.

Figures 6c and 6d show these channels at work in equilibrium: Reducing progressiv-
ity increases the attractiveness of higher paid occupations which, everything else equal,
increases selection into these occupations. In our case, the highest paid workers are, on
average, in non-routine cognitive occupations. Therefore, the share of employment in
NRC occupations expands as θ1 contracts. This inflow of employment into NRC raises
the marginal productivity of other occupations and, thus, has a positive effect on their
wages. Reducing θ1 to its optimal value implies a 0.3% drop in NRC wages in equilib-
rium.

However, the interests of the individuals in a given occupation do not necessarily
coincide. This is most obvious for agents with a medium to the low cost of acquiring
NRC training. These individuals benefit from an increase in progressivity, given that
it discourages agents with a higher cost of NRC training from joining their occupation,
reduces NRC labor input, and raises their marginal productivity and wages. This is
the mechanism that explains why, in Figure 5b, agents who continue to choose NRC
occupations when progressivity goes up prefer, on average, a high level of progressivity
despite being at the top of the wage distribution.37 Note that there is no selection effect
in terms of the distribution of agents in the profession with respect to earnings potential
when progressivity goes up. This is because the decision to join is taken only based on
the training cost, and the occupation-specific ability has not yet been realized.

The same (reverse) logic applies to agents in the occupations at the bottom of the
wage distribution. While they may benefit from an increase in the progressivity of the
tax system, this also increases the attractiveness of joining their occupation, all else equal
— for example, non-routine manual occupations, which earn the lowest wages in the
economy, on average. A drop in progressivity to the optimal value increases their wages
by 1.5% and reduces their employment share by 0.4%. The effect on NRM wages is so
strong that it starts to revert the net welfare loss to shallow levels of progressivity, as the
scarcity of NRM workers implies that their wage increases significantly.

For middle-wage earners, in RC and RM occupations, wages increase by 0.6% and

36Holter et al. (2019) show that with this tax function, only very low earners will get an increase in their
marginal tax rate when progressivity falls. The average tax rate will, however, increase for low-earners.

37This is the same mechanism that underlies the creation of professional guilds. One wishes to limit
entry to the profession.
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0.3%, and the employment shares drop by 0.3 p.p. and 0.4 p.p., respectively. In the
end, the positive effects of increased output and wages for the lower-paid occupations
dominate the negative effects. On the minus side, lowering progressivity reduces the in-
surance against idiosyncratic shocks by increasing the variance of after-tax labor income.
It also reduces the ability of the tax system to reduce inequality between households.

In the end, the positive effects on output and wages from setting θ1 = 0.15 exceed
the negative effects from greater inequality and lower insurance against uncertainty, but
barely. At the heart of the trade-off that determines optimal progressivity lies occupa-
tional choice. Whereas progressivity in most of the previous literature only affected the
intensive margin of the labor choice (either through hours worked or continuous skill
choice), it now affects the extensive margin via the choice of occupation, which makes
top-wage earners ambivalent as to their preference of progressivity of the tax system. In
the next subsection, we see how these forces are exacerbated by technological change.

6.3 The Impact of Technological Change on Optimal Tax Progressivity

In this section, we answer the second main question in our paper: How did the tech-
nological transformation that took place between 1980 and 2015 affect optimal tax pro-
gressivity? To answer this, we evaluate optimal progressivity in 2015 and then investi-
gate how each source of technological change, investment-specific technological change
(ISTC), occupation-specific efficiency (LAT), and TFP affect our answer.

We find a significant drop in optimal tax progressivity, θ1, from 0.15 to 0.05 between
1980 and 2015. The welfare gain from moving to the optimal policy in 2015 is 1.4% in
consumption equivalent variation for unborn agents, whereas in 1980, it was only 0.06%.
Technological change plays a major role in reducing optimal progressivity, and in partic-
ular, the single most important factor is ISTC. We begin by discussing the implications
of changes in each source of technological change for aggregate variables. Then, we
conduct a welfare analysis for 2015 and disentangle the drivers of the fall in optimal tax
progressivity.

Table 5 displays the parameter changes that mimic the move to the 2015 calibration,
and Table 7 displays how removing each source of technological change affects output
per capita, capital, and prices. The main takeaway from Table 7 is that ISTC had the most
significant impact on aggregate variables out of all sources of technological change. First,
it accounts for around 70% of output per capita growth compared to a scenario where
there is no tech growth between 1980 and 2015, by making an investment in equipment
capital more attractive. This is reflected in a higher post-tax return rate when compared
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Table 7: Impact of Technological Change on Quantities and Prices

2015 No ISTC 1980 LAT 1980 TFP No tech ∆

Output per capita 1.39 1.08 1.35 1.23 0.95

Capital to output 4.96 0.90 4.57 4.53 0.78

Interest rate (post-tax) 0.05 0.03 0.05 0.05 0.03

NRC wage 1.38 1.04 1.36 1.22 0.95

NRM wage 1.11 0.93 1.23 0.99 0.94

RC wage 1.25 1.05 1.30 1.12 1.00

RM wage 1.00 0.85 1.20 0.90 0.93

Note: The table shows the equilibrium impact of technological change on quantities and
prices in the model. “No ISTC’, “1980 LAT’, “1980 TFP’ denote the values of aggregate
variables when we, respectively, set investment prices at the 1980 value, the occupation-
specific efficiency indices at 1980 values and TFP at its 1980 level, while keeping other
parameters at their 2015 values. “No tech’ shows the impact of simulataneously removing
all sources of technological change. All variable (except the interest rate) are normalized
to 1 in 1980.

with all other scenarios. Second, it is responsible for between 80 to 100% of the growth
in the hourly wages in all occupations compared with the scenario where there is no
technological change.

Latent occupation-biased technological change (LAT) has a positive but very small
impact on GDP per capita and capital. However, it hurts the wage rate of all occupations
except for NRC. This follows from the results of the production function estimation and
the equilibrium occupation shares resulting from the changes in occupation-specific pro-
ductivities. More workers end up choosing higher-paying occupations, thereby reducing
their wage rates.

Finally, TFP has a large positive impact on GDP per capita, accounting for about
30% of its growth.38 It is responsible for between 40 to 100% of the wage growth by
occupation relative to the no tech growth scenario.

In summary, the technological change produced a significant increase in the level of
output per capita, the returns to investment (interest rates), and wages. However, as we
argued in section 6.1 it also generated an increase in labor market inequality, with the
NRC wages growing more than those of other occupations. This affects the trade-offs
between efficiency, inequality and insurance that underlie the determination of optimal
tax progressivity. Figure 7 displays the welfare analysis.

Wu (2021) estimates that the progressivity in the U.S. tax system declined from 0.19 to
0.14 between 1980 and 2015. He finds that changes in economic conditions can explain

38The decompositions need not add to 100% as they interact.
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Note: The top left panel plots social welfare as a function of the progressivity parameter, θ1, for 2015, under
the baseline calibration. Social welfare is measured as the consumption equivalent variation required for
agents entering the labor market to be indifferent between the baseline policy and the new one. The vertical
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model. The right panel shows the social welfare functions for households starting their life in the indicated
occupation categories each year. In this case, welfare is the expected lifetime utility of agents once they
have chosen occupation but before they know ai (ability) and ϵi1 (starting level of wage risk).

Figure 7: Optimal Progressivity in 2015, for all and Across Occupations

about 62% of this change39, and argues that the rest could be due to the government
shifting its welfare weights towards high-ability households. In our framework, we do,
however, predict that optimal progressivity dropped from 0.15 in 1980 to 0.05 in 2015

without changing welfare weights.
What leads to this remarkable two-thirds drop in optimal progressivity? How do

the different sources of technological transformation contribute to this shift in optimal
progressivity, and how do they affect the trade-offs faced by the policymaker? To an-
swer these questions, we use our decomposition of the welfare function into the level,
inequality and insurance effects and study the impact of each source of technological
change (Figures 9 and 10). In a nutshell, we find that ISTC is the main driver of the
results.

The trade-off between efficiency and redistribution/insurance is now more signifi-
cantly dominated by the efficiency side (Figures 7a and 10). This is ultimately a quan-
titative outcome due to the estimated production function and changes in technology

39An ageing population and shrinking gender wage gap calls for less progressive taxes, increased id-
iosyncratic risk calls for more progressive taxes, and an increase in the skill premium (modeled with a
parameter governing the returns to human capital investment) is about neutral with respect to optimal tax
progressivity.
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(c) Wages by Occupation
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(d) Employment Shares by Occupation

Note: Total labor input is the sum of labor efficiency units supplied in the economy. Average hours is the
percentage of the labor endowment used to work on average. Panels show how prices and quantities in
the economy change concerning progressivity.

Figure 8: Comparative Statics of Progressivity in 2015.

over time. However, it is due to three main reasons: (i) There is now much more capi-
tal, making NRC workers very productive. Getting more workers to choose NRC has a
stronger positive impact on output, the level channel. (ii) The higher equilibrium return
rate on capital given its high productivity. This implies that self-insurance is easier and
the welfare gains from improving risk-sharing through more progressive taxation are
less significant, which reduces the importance of the uncertainty channel relative to 1980.
(iii) The effect of capital accumulation and inflow of workers to NRC professions during
the 1980-2015 period on the marginal productivities and employment shares in the lower
paid professions is such that their wage rates increase substantially. This dampens the
inequality channel.
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There is, on the one hand, still a positive welfare effect from reducing inequality
through progressivity. Because of capital-occupation complementarity, the wages of dif-
ferent occupations will rise by different amounts in response to an increase in capital
equipment due to larger savings, leading to rising dispersion in marginal utilities of con-
sumption and leisure, which negatively affect the inequality channel. On the other hand,
this channel is flattened because employment shares change in equilibrium as agents
select different occupations in response to variation in relative wages and post-tax earn-
ings (reason iii). For example, a reduction in θ1 will make high-wage earners better off
by increasing after-tax earnings. However, it will have a negative effect on their wages
by making their occupation more attractive to work in via both the intensive and the
extensive margins. Figure 8 shows how quantities and prices respond to θ1 in equilib-
rium. Our framework predicts that the net effect of reducing θ1 to 0.05 is to significantly
increase the wages of all occupations (NRM: 5.8%; RC: 4.8%; RM: 5.1%) except for NRC
(-6.7%). The NRC occupation experiences an increase in its share of total employment
(5.1 p.p.), while all others experience a drop (NRM: -1.4 p.p.; RC: -1.4 p.p.; RM: -2.3 p.p.).
In conclusion, the positive impact of a reduction in progressivity on the after-tax earn-
ings of NRC occupations, which are the highest-paying, makes them more attractive.
This offsets the occupation-capital complementarity effect embedded in the production
function.

The relative strength of these competing mechanisms explains the preferences for
optimal progressivity by occupation displayed in Figure 7b. Are the agents in NRC
occupations partial to a reduction in progressivity (conditional on still choosing NRC)?
Strikingly, the answer is that they are less keen on that policy than the workers in the
lower-paid occupations. The reason is the effect that a lower progressivity policy has on
occupation selection: Lowering the tax rate on high wage earners increases their after-
tax earnings but leads to an inflow of workers and actually a reduction in their hourly
post-tax wages at some point40. As progressivity drops, the share of NRC workers in
the economy increase, as well as their weight in determining the optimal redistributive
policy.

In contrast, lower-paid occupations would unanimously benefit from a flat tax rate.
On the one hand, there is no insurance against uncertainty. However, as previously dis-
cussed, the higher return rate on savings relative to the 1980 change dampens this chan-
nel, given that insurance is cheaper. The inequality channel is also negatively affected
but has a low weight, given that a large fraction of wage inequality in this economy is
endogenous and depends on individuals optimally choosing their occupation. On the

40That point being θ1 = 0.11.
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Figure 9: Optimal Progressivity in 2015 and the Role of Technological Change.

other hand, a flat tax rate leads to a surge in savings in the capital-to-output ratio and an
outflow of workers to higher-paid occupations. Both of these mechanisms have the un-
ambiguous impact of increasing the wages of all occupations except for the NRC, whose
members cannot move to a higher-paid occupation.

Quantitatively, these results stand in stark contrast to those obtained by Heathcote
et al. (2020), who find an optimal level of θ1 = 0.16 in 2016 (a slight drop from 1980)41.
Part of the reason for this is the heterogeneous impact of savings and technological
change on the marginal productivities of each occupation, which is absent from their
model. Rather, in their framework, agents choose their level of skills, which are imperfect
substitutes in production but have a single constant elasticity of substitution, and there
is no role for capital in production.

Figure 9 confirms our interpretation of ISTC as the main driver of these changes. The
solid blue line is the welfare function in 2015, where the maximum is 0.05. The dashed
red line indicates the calibration for 2015 with equipment investment prices at their 1980

level. Here, the maximum is 0.18, close to the value estimated for 1980 and the optimal
θ1 found by Heathcote et al. (2020) and Wu (2021). As discussed earlier, this equilibrium

41Wu (2021) also finds an optimal value of θ1 = 0.16 in the 2010s.
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Figure 10: Welfare Trade-offs With and Without ISTC.

displays lower return rates and sensitivity of wages, employment shares, and output per
capita to progressivity. As a result, the optimal progressivity is much higher.

The purple dotted line indicates the welfare function in an economy calibrated to
2015 with occupation-specific efficiency indices at their 1980 levels. In this case, earn-
ings inequality is lower, given that the NRC occupation does not experience as large an
increase in wages as in the 2015 calibration. As a result, the inequality channel is even
weaker, which drives optimal progressivity further to the left. Finally, the dash-dotted
grey line plots the welfare function when keeping TFP at its 1980 value. As mentioned
before, TFP growth raises wages and output. It does, however, have little effect on rel-
ative wages, see Table 7. When everyone becomes poorer, this, however, leads to fewer
savings and capital, which moves optimal progressivity to the left.

Figure 10 confirms our hypothesis that ISTC increases the sensitivity of the level effect
to progressivity and weakens the others. The solid blue line indicates the breakdown of
welfare by component for the 2015 calibration, while the dashed red line shows the same
breakdown for an economy that did not experience ISTC.

In the latter case, the uncertainty and inequality channels are more sensitive to
changes in θ1 given that the economy has a higher cost of insurance and that the wages
of lower-paid occupations react less to an outflow of workers. Additionally, given that
no ISTC took place, output per capita is much less sensitive to additional savings by
households as a result of lower progressivity.
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7 Conclusion

We have developed a life-cycle, overlapping generations model with uninsurable id-
iosyncratic earnings risk, three sources of technological change, a detailed tax system,
and occupational choice. Furthermore we have estimated an aggregate production func-
tion with capital-occupation complementarity and four types of labor inputs that differ
with respect to cognitive complexity and routine task intensity. Inserting the estimated
production technology in our model, calibrating it to resemble the U.S. in 1980, and then
treating it with the changes in the price of equipment goods (ISTC), latent occupation-
biased technological change (LAT) and TFP, we have shown that technological trans-
formation can fully account for the change in wage premia as well as the increase in
earnings inequality between 1980 and 2015. The main driver is Investment-Specific Tech-
nological Change which leads to more capital accumulation, increasing the relative wage
of non-routine cognitive occupations, which benefit the most from complementarity with
capital.

In isolation, increasing earnings inequality might strengthen the case for redistribu-
tive policies. However, we find a significant drop in optimal tax progressivity between
1980 and 2015. This fall can be solely attributed to ISTC. In our model, in addition to the
traditional effects of increasing work hours and savings, lower progressivity leads to an
inflow of workers into higher-paid occupations, which are more productive with higher
ISTC. This raises output and also the wages of those remaining in the occupations at the
bottom of the wage distribution, dampening the redistributive benefits of progressive
taxation. Finally, ISTC raises the real return rates on saving, making self-insurance easier
and thus weakening the insurance role of progressive taxation.

Our work suggests several promising lines for future research. First, while we may
find that it is optimal to reduce the progressivity of the labor income tax system, this
does not mean that other redistributive policies are not advisable, such as subsidizing
access to education or training to enter better-paid occupations, see e.g. Krueger and
Ludwig (2016), Stantcheva (2018). There will be interesting interactions between these
policies, the tax system, occupational choice and wages. Second, we did not study capital
or wealth taxation in this paper. However, the importance of capital-occupation comple-
mentarities demonstrated in this paper could likely alter conclusions on optimal capital
taxation. Finally, we do not consider job displacement due to technological change and
non-participation in the workforce. How would this affect our welfare analysis? Is a pro-
gressive tax system the right tool to counter these phenomena, or are targeted measures
more appropriate?
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ONLINE APPENDIX
The Online Appendix is organized as follows. Section A indicates micro-data sources
and methods. Section B describes the construction of production factor, price, and output
measures. Section C describes the procedure to estimate the production function. Section
D outlines the procedure for the computation of the equilibrium. Section E describes our
welfare measures and how to decompose welfare effect of policy changes into the effect
on redistribution, insurance and efficiency. Section F derives the first order conditions
of the firms in our model. In Section G, we study optimal tax policy in 2015 under
the alternative assumption of fixed employment shares (i.e. agents have no choice of
occupation).

A Data Sets

A.1 CPS

Imputation. From survey year 1968 to 1975, hours worked in the previous year are
not available. We follow Acemoglu and Autor (2011) and impute these by running a
regression of hours worked on the previous year on hours worked in the current year,
on an indicator variable for whether the individual worked 35+ hours last year or not,
on the current labor force status, on an interaction variable between the two previous
variables, and on the sector the individual worked in the previous year for the survey
years 1976-1978. We then use the estimated equation to assign hours worked in the
previous year to the 1968-1975 observations.

Weeks worked last year are not available for 1968-1975 also. We compute mean weeks
worked last year by race and gender for the years 1976-78 for each bracket and impute
those means for the 1968-1975 period.

Top-coding. To obtain accurate estimates of earnings inequality and wage premia,
we have to account for the top-coding in the CPS earnings data. We use the variables IN-
CWAGE, INCLONGJ and OINCWAGE, in the taxonomy of Flood et al. (2018). We proceed
in two steps: (i) identify top-coded observations; (ii) assuming the underlying distribu-
tion is Pareto, we forecast the mean value of top-coded observations by extrapolating a
Pareto density fitted to the non-top-coded upper end of the observation distribution. For
details on the procedure to approximate the tail of a Pareto distribution see Heathcote
et al. (2010).
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Top-coding thresholds in the ASEC change across variables and time. Information on
top-coding thresholds can be found on the IPUMS website. Prior to the 1996 survey year,
there is little documentation available regarding the thresholds, but the effective top-
coding thresholds are provided by IPUMS based on Larrimore et al. (2008). From 1996

onward, the Census Bureau began reporting top-coding thresholds for a set of income
variables.

In addition, the Census Bureau has changed its top-coding procedure through time:
from 1996 until 2011, the values for top-coded observations were replaced with values
based on the individual’s characteristics (so-called cell/group means). From 2011 on-
ward, the Census Bureau shifted from an average-replacement value system to a rank
proximity swapping procedure.

Ideally, we would like to use a consistent procedure for handling top-coding across
time. However, since the Census Bureau started publishing top-coding procedures in
1996, they drastically reduced public use censoring thresholds. Heathcote et al. (2010)
found that the Pareto-extrapolation procedure does not perform well in this case. There-
fore, we only apply this procedure until survey year 1995. Heathcote et al. (2010) use
the extrapolation until survey year 1999, but we find that this produces a large jump in
earnings inequality in the late 90’s which does not seem plausible.

Bottom-trimming. According to Flood et al. (2018), there is no publicly available in-
formation on bottom-coding thresholds of income variables in the ASEC. To deal with
this shortcoming, a common practice in the literature is to select a bottom threshold on
earnings for inclusion in the sample. We use the procedure of Heathcote et al. (2010):
the final sample only includes observations where the hourly wage is above the mini-
mum threshold of one half of the federal minimum wage in each year (end-year federal
minimum wage data for farm and non-farm workers is retrieved from FRED).

Variable definitions. All variables are computed as explained in Acemoglu and Au-
tor (2011).

Sample selection. The population of interest comprises non-military and non-insti-
tutionalized individuals aged 16 to 70, excluding the self-employed and farm sector
workers. We build two samples, labeled A and B. Table 8 shows the number of records
at each stage of the selection process.

The initial sample is a cleaned version of the raw data, which excludes individual
records which are either: below the age of 16 in the previous year, not part of the uni-
verse, not wage workers, did not work in the previous year, have zero or missing weights,
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Table 8: CPS Sample Selection (survey years 1968-2017)

Dropped Remaining

Initial sample 4,089,617

Wage > 0.5 × min. wage 116,608 3,973,009

Sample A 3,973,009

Age 25-64 861,598 3,111,411

Hours worked per week last year > 6 19,308 3,092,103

Sample B 3,092,103

missing age, or have positive earnings but no weeks worked in the previous year, or vice-
versa. In 2014, two distinct samples were drawn because of sample redesign. We keep
the sample which is consistent with previous surveys.

Sample A excludes all records where the hourly wage is lower than one half of the
federal hourly minimum wage. We assume that this sample is representative of the
(non-institutionalized) U.S. population. In order validate the data, we compare a set of
sample statistics on wages and hours worked to their aggregate (NIPA) counterpart. This
is shown on Figure A.1.

There is an average absolute deviation of 5% between the NIPA (Table 2.1, line 3)
and the CPS wage bill. Regarding hours of part and full-time employees, the NIPA
series (Tables 6.9B-D, line 2) is lower by 3.3%, on average, and 6.5% after 1986. The BEA
uses BLS data to calculate its hours worked series, but the variables are based on the
Quarterly Census of Employment and Wages (QCEW) data, rather than on the ASEC
variable “usual hours worked per week last year” used in this paper. The total number
of full- and part-time employees is much closer to the NIPA series (Table 6.4B-D, line 2),
albeit the gap is still 2.7% on average.

Sample B excludes individuals between 25 and 64 years old in the previous year.
We consider that 25 years old is a reasonable cutoff age, where individuals’ occupation
choice has stabilized. According to the BLS, for 2018 the labor force participation rate
drops from 65% to 27%, on average, between the 55-64 and the 65 and older age brackets,
which justifies our upper bound for inclusion in the sample. We also exclude records
where individuals usually worked less than 6 hours per week in the previous year. This
is the sample we use to calculate inequality and wage premia statistics. For compar-
ison, Heathcote et al. (2010) have 2,578,035 individual records in their individual-level
database, covering the 1967-2005 survey years. This implies that we have around 63,000

records per year, on average, while Heathcote et al. (2010) have 68,000.
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Figure A.1: Comparison between aggregate labor variables in the CPS and in the NIPA.
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A.2 PSID

Data set structure. The PSID is a panel data set of U.S. individuals and family units. The
original 1968 sample was drawn from two independent sub-samples: n over-sample of
roughly 2000 poor families selected from the Survey of Economic Opportunities (SEO),
and a nationally representative sample of roughly 3000 families designed by the Survey
Research Center (SRC) at the University of Michigan. PSID surveys were annual from
1968 to 1997, and biennial since then.

Since 1968, the PSID has interviewed the individuals from the originally sampled
families, which have either remained in the 1968 family unit, or have split off, forming
their own. Although some information is collected for each individual in the family unit,
the greatest detail is for the so-called husband/reference person and the wife/spouse,
when present. In particular, information about wages, occupation, and hours worked
are often limited to these two family members, which is the reason why we will focus
on these two when analyzing PSID data. See the PSID website for the rules on how the
reference person is selected for each family unit.

Because the SRC sample was representative of the U.S. population in 1968, we will
restrict our analysis to those families and their split-offs (with a 1968 interview number
below 5000). No weights are used for this reason. The main issue with this choice is the
inflow of immigrants since 1968. In 1990, the PSID added 2000 Latino households, which
covered a major immigration group but missed out on a range of post-1998 immigrants,
such as Asians. Because of this short-coming, this sample was dropped in 1995. A new
sample of 441 immigrant families, including Asians, was added in 1997 (the so-called
“Immigrant” sample).

Variable definitions. To maintain consistency, we use the variable definitions of Ace-
moglu and Autor (2011), which we used for the CPS data set and which are close to those
of Heathcote et al. (2010).

Bottom-trimming. As with the case of the CPS, we eliminate records where the
hourly wage is below one half of the end-year federal minimum wage.

Sample selection. As with the CPS, our data cleaning and sample definition pro-
cedures are described in this subsection. We build three samples, labeled A, B, and C.
Table 9 shows the number of records at each stage of the selection process.

The initial sample is a cleaned version of the raw data on heads and spouses only
and excludes individual records which are: below the age of 16 in the previous year,
not wage workers, did not work in the previous year, are missing age, or have positive
earnings but no weeks worked in the previous year, or vice-versa. Sample A excludes
all observations where hourly wages are lower than half of the federal minimum wage.
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Table 9: PSID sample selection (survey years 1968-2017)

Dropped Remaining

Initial sample 161,305

Wage > 0.5 × min. wage 38,999 122,306

Sample A 122,306

Age 20-64 5,233 117,073

Hours worked last year > 260 1,702 115,371

Sample B 115,371

Private sector 9,288 106,083

Non-farm 10,342 95,741

Sample C 95,741

Sample B excludes all individuals with ages lower than 20 or higher than 64 in the
income reference period or that worked less than 260 hours in the income reference
period. Finally, sample C excludes all individuals working in the public or farming
sectors. This leaves 95,741, and 11,284 individuals in the final sample.

B Measures

B.1 Labor Supply and Wages

We follow the procedure of Krusell et al. (2000) to build measures of wages and the labor
supply for each of the labor categories (NRC, NRM, RC, RM). The sample used for this
purpose is the same as the one used for the regression analysis described on section A,
apart from the fact that we include workers which did not work full-year or full-time.
The reason for this is that in the regression analysis we were aiming to identify the wage
premia by observing workers in a similar labor market situation. Here, the aim is to
construct measures of labor inputs and wages which will be used in the estimation of
the production function. We use these bins in order to exclude phenomena such as the
increased labor force participation of women from the estimation. Since the labor supply
of part-time workers contributes to real GDP, it is necessary to account for those. We
do not, however, include self-employed individuals in the analysis. In what follows, the
subscript t denotes the year and i denotes an individual observation.

For each worker, we record the following variables: hours usually worked per week
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last year, weeks worked last year, earnings last year, potential experience, race, gender,
years of education, occupation category and ASEC weight. Potential experience is di-
vided into 5 five-year groups. Race into white, black and other. There are two sexes.
Education is divided into 5 categories: no high school, high school graduate, some col-
lege, college graduate, and post college education. Occupation groups are defined as
before.

Each worker is assigned to one group defined by the variables described. There are
600 groups, each one denoted by g ∈ G. For each group, we construct a measure of the
labor input and labor earnings. The individual labor input is defined as lit = hitwkit,
where hit is hours usually worked last year and wkit is weeks worked last year. The
individual wage is defined as wit = yit/lit. Therefore for each group g we define:

lgt =
∑i∈g litµit

µgt
,

wgt =
∑i∈g witµit

µgt
,

where µit is the individual ASEC weight and µgt = ∑i∈g µit. We aggregate the set G
of 600 sets into the occupation categories previously defined o ∈ {NRC, NRM, RC, RM}.
From this aggregation we obtain total annual labor input per group, No,t, and its hourly
wage, wo,t. We assume that the groups within a category are perfect substitutes, and for
aggregation we use as weights the group wages of 1980. Thus, for each category o, we
have:

No,t = ∑
g∈s

lgtwg80µgt,

wo,t =
∑g∈o wgtlgtµgt

No,t
,

where µit is the individual ASEC weight and µo,t = ∑i∈s µit. This yields a measure of
the total labor input in hours by category (hNRC,t, hNRM,t, hRC,t, hRM,t), as well as average
hourly wages (wNRC,t, wNRM,t, wRC,t, wRM,t).

B.2 Capital, Prices and Output

Table 10 shows the definitions of main variables compared with those of Krusell et al.
(2000).
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Note: Wage premia are obtained as the log difference between the constant composition average wage
of each occupation category. Groups for wages are constructed by using a constant composition
of individual observable characteristics. The data source is the CPS Annual Social and Economic
Supplement. See sections A and B of the Online Appendix for details.

Figure B.1: Employment and Wages by Occupation Category.

Capital. Our main source for capital data are the BEA’s fixed asset accounts and the
NIPA. We use only private capital in our measure. Nominal investment for each asset
category is deflated using the investment price index from the BEA.

Equipment prices. To obtain the price of equipment in each year, we aggregate
investment price indices from the BEA fixed asset accounts (Table 5.3.4) across equipment
types using a Törqvist index. We then divide the resulting average equipment price by
the BLS consumer price index for all urban consumers to obtain the relative price of
investment.

Depreciation rates. Obtained using the method by Eden and Gaggl (2018). We use
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Table 10: Comparison with Krusell et al. (2000)

Variable Definition Definition (KORV)

Output Business non-farm gross value added Private domestic product (excluding housing and farm)
Structures Non-residential structures (private) Non-residential structures (private)
Equipment Equipment (private) Non-military equipment (private)
Equipment price Equipment price deflator (BEA) Authors’ calculations based on Gordon (1990)

BEA data on the net current cost of the stock of capital, PitNetStockit, and depreciation
at current cost, PitDepit, to compute depreciation rates, which are given by the following
formula:

δit =
PitDepit

PitNetStockit + PitDepit
.

We compute average depreciation rates for equipment and non-residential structures,
with weights given by the capital stocks at constant prices.

Output. To measure output, we use real gross domestic product in chained 2012 US
dollars, retrieved from FRED (FRED code: GDPCA; NIPA code: A191RX).

C Production Function Estimation Method

To estimate the production function, we use the two-step SPML estimator proposed by
Ohanian et al. (1997). First, we write the non-linear state space model formally. Next, we
briefly describe the methods used to estimate it.

Our non-linear state-space system of equations is of the form:

Measurement equations : Zt = f (Xt, ψt, ωt; θ),

State equations : ψt = ψ0 + ψ1t + νt.

f (.) contains the labor share equation, the three wage bill equations and the no-
arbitrage condition. Zt is thus a (5 × 1) vector, which is a function of the variables Xt,
the log of the unobservable labor quality indices ψt, which is a (4 × 1) vector, and νt

and ωt which are (5 × 1) and (4 × 1) vectors, respectively, of i.i.d. normally distributed
disturbances. Like Krusell et al. (2000), we assume that At+1 and ψt+1 are known when
investment decisions are made.

The model is estimated in two steps: (i) instrument the variables which are potentially
endogenous; and (ii) apply the SPML estimator. We assume that the capital stocks, Ks,t

and Ke,t, are exogenous at date t. However, we allow for the possibility that date t
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values of the labor inputs may respond to realization of the technology and labor quality
shocks. To instrument these variables, we run a first stage regression of the labor inputs
on a constant, current and lagged equipment and structure capital stocks, the lagged
relative price of equipment, a trend and the lagged value of the OECD composite leading
indicator of business cycles. X̃t is the vector of Ks,t, Ke,t, the instrumented values of the
labor inputs, the depreciation rates and the capital income tax.

The SPML procedure is as follows. Given the distributional assumptions on the error
terms, for each t we generate S realizations of the dependent variables, each indexed by
i, starting at t = 1 in two steps:

Step 1 : ψt = ψ0 + ψ1t + νt.

Step 2 : Zi
t = f (X̃t, ψi

t, ωi
t, θ).

In Step 1, we draw a realization of νt from its distribution (conditional on our guess of
Ω) and use it to construct a date t value for ψt. In Step 2, we use our realization of ψt, ψi

t,
together with a draw of ωt (conditional on our guess of ηω), to generate a realization of
Zt, Zi

t. By using this procedure to generate S realization, we can obtain first and second
simulated moments, respectively, of Zt:

mS(X̃t; θ) =
1
S

S

∑
i=1

Zi
t,

VS(X̃t; θ) =
1

S − 1

S

∑
i=1

(
Zi

t − mS(X̃t; θ)
) (

Zi
t − mS(X̃t; θ)

)′
.

From this procedure, we will obtain 2T moments, which we will use to construct an ob-
jective function. Denoting the vector of all actual observations of the dependent variables
by ZT:

LS(ZT; θ) = − 1
2T

T

∑
t=1

[
[Zt − mS(X̃t; θ)]′VS(X̃t; θ)−1[Zt − mS(X̃t; θ)] ln det(VS(X̃t; θ))

]
.

The SPML estimator, θ̃ST, is the maximizer of this expression. It is very important that
throughout the maximization procedure of the objective function the same set of (T × S)
random realizations of the dependent variables. Otherwise, the likelihood becomes a
random function.
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D Solution Algorithm

To characterize the stationary competitive equilibrium of the model we must find the
ratios Ks

NNRC
, Ke

NNRC
, NNRM

NNRC
, NRC

NNRC
, and NRM

NNRC
which clear the capital and labor markets. In

addition, we have to fit the tax function, clear the social security budget and find the
value of Γ which, given a distribution for the state variable b, uniformly distributes the
assets of the dead among the living. G, public consumption of final goods, clears the
government budget constraint. The algorithm is as follows:

1. Make a guess on Ke
NNRC

, NNRM
NNRC

, NRC
NNRC

, and NRM
NNRC

.

2. Obtain the value of Ks
NNRC

which is consistent with the remaining ratios given the no-
arbitrage condition 21 using a bisection method. Compute marginal productivities
A-24-A-28 with these guesses.

3. Guess ψss, Γ and average earnings.

4. Compute value and policy functions for the retired and active agents by backward
induction, given processes for the transitory and permanent shocks. Both shocks
are discretized using the Tauchen procedure (Tauchen (1986)), with 4 and 20 states,
respectively. We use 20 states for the permanent shock so that we have 5 states
for each group supplying a different labor variety. This allows us to calibrate both
within-group and between group earnings inequality. The grids for b and n have 24

and 100 points, respectively. In between the grid points, the values of the functions
are interpolated using cubic splines.

5. Simulate the model for 120,000 agents, where assets holdings are zero for every
agent entering the labor market. Obtain total savings (asset demand),

∫
d + ΓdΦ,

and quantities of each labor variety supplied, NNRC, NNRM, NRC, NRM.

6. Compute output given the labor supply of households. Asset demand must be
allocated between structure and equipment capital. The quantity of structures is
obtained by multiplying the initial guess of Ks

NNRC
by the quantity of labor supplied

by households NNRC. The quantity of equipment, measured in consumption units,
is the residual of asset demand. If this residual is negative, we set the quantity
of equipment to be 10% of the guess for the structure stock, which allows the
algorithm to proceed.

7. Obtain implied values for ψss, Γ and average earnings. Compare with guesses made
in step 4. If the difference between guesses and implied values is within a preset
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tolerance interval, proceed to step 8. If not, update the guesses of each variable and
go back to step 4.42

8. Compute the difference between the ratios implied by the labor supply and asset
demand of households with the initial guesses. If these differences are within a
preset tolerance level, the solution has been reached with sufficient accuracy. If not,
update the guesses and go back to step 2.

E Welfare

A household chooses an occupation after drawing a random vector s which determines
the utility of joining each occupation type. Let κ(s) denote the idiosyncratic utility of
joining a particular occupation given the vector s. Thus, the expected lifetime utility of
that household is given by:

v(s) = κ(s) + E0

[
J

∑
j=1

βj−1 [Sju(cj, nj) + (1 − Sj)D(bj+1)
]]

. (A-1)

Utilitarian social welfare is defined as:

W =
∫

v(s) dΦ(s) (A-2)

where Φ(s) is the distribution over the idiosyncratic occupation costs after occupation
decisions are made. The problem solved by our social planner is:

max
{θ1,θ0}

W, s.t. G∗ =
∫

τkr(b + Γ) + τcc + nτl

[
nw(j, o, a, u)

1 + τ̃ss

]
dΦ (A-3)

That is, the social planner takes government spending as given and find the socially
optimal progressivity and level of the tax system to raise the required revenue. For a
given s, if we scale consumption by 1 + g(s) in each period and state of the world, the
expected lifetime utility of the resulting allocation is:

v(s; g(s)) = κ(s) + E0

[
J

∑
j=1

βj−1 [Sju(cj(1 + g(s)), nj) + (1 − Sj)D(bj+1)
]]

. (A-4)

42Our algorithm uses the homotopy procedure to update all the guesses. That is, if ν is the initial guess
and ν′ is the value implied by the simulation, then the updated guess is ν′′ = ν + a(ν′ − ν), where a is a
constant chosen by the researcher which controls the size of the update and the rate of convergence of the
algorithm.
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Isolating 1 + g(s) in the right-hand side of the equation:

v(s; g(s)) = κ(s) +
J

∑
j=1

βj−1Sj log(1 + g(s)) + E0

[
J

∑
j=1

βj−1 [Sju(cj, nj) + (1 − Sj)D(bj+1)
]]

. (A-5)

Integrating over the idiosyncratic state s:

W(g) = log(1 + g)
J

∑
j=1

βj−1Sj + W. (A-6)

Let v(s, B) denote the expected lifetime utility of a household with starting state s
under an alternative government government policy B. Let W(B) denote the expected
utility of an unborn individual under that alternative policy. Let gU(s) denote the con-
sumption equivalent variation necessary to make an individual starting in state s in-
different between benchmark policy A and alternative policy B. These variables must
satisfy the following system:

v(s; gU(s)) = v(s, B), (A-7)

W(gU) = W(B). (A-8)

Given these definitions we can define the consumption equivalent variation for an
unborn individual by substituting A-6 into A-8:

log(1 + gU)
J

∑
j=1

βj−1Sj + W = W(B). (A-9)

Solving for gU:

gU = exp

W(B)− W

∑J
j=1 βj−1Sj

− 1. (A-10)

To breakdown the welfare analysis into inequality, uncertainty and level effects, we
decompose gU using the method of Flodén (2001). We define the certainty-equivalent
consumption-leisure bundle for a household starting with state s as:

J

∑
j=1

u(c̄, n̄) = v(s), (A-11)

where c̄ and n̄ are constant streams of consumption and labor supply. Following Flodén
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(2001), we set n̄ to the average labor supply in the economy. We also remove survival
uncertainty on the left-hand side and set the utility of bequests to zero. That leaves only
c̄ to be determined. Solving A-11 for c̄:

c̄ = exp

 v(s)

∑J
j=1 βj−1

+ χ
n̄1+η

1 + η

 . (A-12)

We can now define the cost of inequality:

J

∑
j=1

βj−1u((1 − ρine)C̄, N̄) =
∫ J

∑
j=1

u(c̄, n̄) dΦ(s) = W, (A-13)

where C̄ and N̄ are the average of consumption and labor certainty-equivalents, C̄ =∫
c̄ dΦ(s), and N̄ =

∫
n̄ dΦ(s). Isolating ρine:

ρine = 1 − exp

 W

∑J
j=1 βj−1

− u(C̄, N̄)

 . (A-14)

The cost of uncertainty is defined as:

J

∑
j=1

βj−1u((1 − ρunc)C, N) =
J

∑
j=1

βj−1u(C̄, N̄), (A-15)

where C and N are average consumption and labor in the economy. Solving for ρunc:

ρunc = 1 − exp (u(C̄, N̄)− u(C, N)) . (A-16)

Finally, we are ready to asses the impact of a policy shift in the level of consumption.
However, a shift from policy A to B will change equilibrium levels of both consumption
and labor. To measure the welfare effects in terms of consumption only, we define leisure-
compensated consumption denoted by C̃B:

J

∑
j=1

βj−1u(C̃B, NA) =
J

∑
j=1

βj−1u(CB, NB). (A-17)
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Solving for C̃B:

C̃B = exp

(
log CB − χ

NB1+η − NA1+η

1 + η

)
. (A-18)

We now have all the ingredients necessary to define the three separate welfare effects
of a change from policy A to policy B. Denote glev as the welfare gain from a change in
the levels of consumption and leisure as a result of the policy shift:

glev =
C̃B

CA − 1. (A-19)

Denote gine as the welfare gain from reduced inequality:

gine =
1 − ρB

ine

1 − ρA
ine

− 1. (A-20)

Denote gunc as the welfare gain from reduced uncertainty:

gunc =
1 − ρB

unc
1 − ρA

unc
− 1. (A-21)

Flodén (2001) establishes the following result, which we use in the welfare analysis
section to decompose welfare gains into three elements:

gU = (1 + glev)(1 + gine)(1 + gunc)− 1. (A-22)

F First-Order Conditions of the Firms

The first-order conditions of the firms are the following:43

wNRC,t = Ξt φ1

ϕ1

(
Ke,t

NNRC,t

) ρ1−1
ρ1

+ (1 − ϕ1)


σ−ρ1

(ρ1−1)σ

[1 − ϕ1]ϱNRC,t, (A-23)

wNRM,t = Ξt φ2

ϕ2

(
Ke,t

NNRC,t

) ρ2−1
ρ2

+ (1 − ϕ2)

(
NNRM,t

NNRC,t

) ρ2−1
ρ2


σ−ρ2

(ρ2−1)σ

43Marginal products are expressed as functions of the ratios between each factor and the non-routine
cognitive labor for the purpose of constructing the solution algorithm.
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[1 − ϕ2]

(
NNRM,t

NNRC,t

)− 1
ρ2

ϱNRM,t, (A-24)

wRC,t = Ξt φ3

ϕ3

(
Ks,t

NNRC,t

) ρ3−1
ρ3

+ (1 − ϕ3)

(
NRC,t

NNRC,t

) ρ3−1
ρ3


σ−ρ3

(ρ3−1)σ

[1 − ϕ3]

(
NRC,t

NNRC,t

)− 1
ρ3

ϱRC,t, (A-25)

wRM,t = Ξt(1 − φ1 − φ2 − φ3)

(
NRM,t

NNRC,t

)− 1
σ

ϱRM,t, (A-26)

rs,t = Atα

[
Ke,t

NNRC,t

]α−1

Λ
σ(1−α)

σ−1
t , (A-27)

re,t = Ξt

[
φ1

ϕ1

[
Ke,t

NNRC,t

] ρ1−1
ρ1

+ [1 − ϕ1]


σ−ρ1

(ρ1−1)σ

ϕ1

(
Ke,t

NNRC,t

)− 1
ρ1
+

φ2

ϕ2

[
Ke,t

NNRC,t

] ρ2−1
ρ2

+ [1 − ϕ2]

[
NNRM,t

NNRC,t

] ρ2−1
ρ2


σ−ρ2

(ρ2−1)σ

ϕ2

(
Ke,t

NNRC,t

)− 1
ρ2
+

φ3

ϕ3

[
Ke,t

NNRC,t

] ρ3−1
ρ3

+ [1 − ϕ3]

[
NRC,t

NNRC,t

] ρ3−1
ρ3


σ−ρ3

(ρ3−1)σ

ϕ3

(
Ke,t

NNRC,t

)− 1
ρ3

]
,

(A-28)

where44

Ξt = At

[
Ks,t

NNRC,t

]α

[1 − α]Λ
1−σα
σ−1

t .

44The variable Λt is defined as:

Λt = φ1

ϕ1

[
Ke,t

NNRC,t

] ρ1−1
ρ1

+ [1 − ϕ1]


ρ1(σ−1)
(ρ1−1)σ

+ φ2

ϕ2

[
Ke,t

NNRC,t

] ρ2−1
ρ2

+ [1 − ϕ2]

[
NNRM,t

NNRC,t

] ρ2−1
ρ2


ρ2(σ−1)
(ρ2−1)σ

+ φ3

ϕ3

[
Ke,t

NNRC,t

] ρ3−1
ρ3

+ [1 − ϕ3]

[
NRC,t

NNRC,t

] ρ3−1
ρ3


ρ3(σ−1)
(ρ3−1)σ

+ (1 − φ1 − φ2 − φ3)

(
NRM,t

NNRC,t

) σ−1
σ

.
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G The Impact of Occupational Choice

How would our results in Section 6.3 change if we ignored occupational choice and the
equilibrium effects it has on wages and other variables? Figure G.1 shows how abstract-
ing from occupational choice, and assuming fixed 2015 employment shares, would have
affected our results.

In this case, optimal progressivity in 2015 would be very close to estimated progres-
sivity, though still below it. ISTC still produces a high return rate on capital, which
lowers the insurance value of a progressive tax system relative to 1980. The steepness of
the level channel remains practically unchanged compared to the economy with occupa-
tional choice.

The key difference in this experiment is the effects of progressivity on occupational
choice and wages. Whereas in the previous exercise employment shares responded to
changes in progressivity, in this economy they do not. Hence, a drop in progressivity
generates greater capital accumulation and an increase in the intensive margin by NRC
workers, but not the extensive margin (Figure G.2).

As a result, the net effect of reducing θ1 depends crucially on the relative strength of
capital accumulation versus rising hours in determining wages. Contrary to our previous
exercises, lowering progressivity raises both NRC wages and their after-tax earnings,
which point to a greater strength of the inequality channel. This analysis is illustrated
by the breakdown of the welfare gain by occupation displayed in Figure G.1b which
shows that, in contrast to previous exercises, individuals in the NRC occupation have a
preference for no progressivity at all. Meanwhile, agents in the remaining occupations
wish for high levels of θ1, given that there is no effect positive effect on their hourly
wages from reducing progressivity.

In the end, our answer to the question of what is the implication of technological
change for optimal taxation does not change in qualitative terms if we abstract from
occupational choice, though it does change quantitatively.
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(b) Welfare Function by Occupation

Note: The top left panel plots social welfare as a function of the progressivity parameter, θ1, for 2015, under
the baseline calibration. Social welfare is measured as the consumption equivalent variation required for
agents entering the labor market to be indifferent between the baseline policy and the new one, without
accounting for transitions. The vertical lines indicate current and optimal progressivity levels. θ∗1 indicates
optimal progressivity according to the model. The right panel shows the social welfare functions for
households starting their life in the indicated occupation categories in each year. In this case, welfare
is the expected lifetime utility of agents once they have been assigned an occupation but before they
know ai (ability) and ϵi1 (starting level of wage risk). Calculations are carried out for the model with no
occupational choice.

Figure G.1: Optimal Progressivity in 2015 and Across Occupations, Without Occupa-
tional Choice.
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(c) Wages by Occupation

Note: Total labor input is the sum of labor efficiency units supplied in the economy. Average hours is the
percentage of the labor endowment used to work on average. Panels show how prices and quantities in
the economy change with respect to progressivity.

Figure G.2: Comparative Statics With Respect to Tax Progressivity in 2015 in the Absence
of Occupational Choice.
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